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Abstract. Precession Electron Diffraction (PED) offers a
number of advantages for crystal structure analysis and
solving unknown structures using electron diffraction. The
current article uses many-beam simulations of PED inten-
sities, in combination with model structures, to arrive at a
better understanding of how PED differs from standard
unprecessed electron diffraction. It is shown that preces-
sion reduces the chaotic oscillatory behavior of electron
diffraction intensities as a function of thickness. An addi-
tional characteristic of PED which is revealed by simula-
tions is reduced sensitivity to structure factor phases. This
is shown to be a general feature of dynamical intensities
collected under conditions in which patterns with multiple
incident beam orientations are averaged together. A new
and significantly faster method is demonstrated for dyna-
mical calculations of PED intensities, based on using in-
formation contained in off-central columns of the scatter-
ing matrix.

Introduction

Precession Electron Diffraction (PED) is a technique for
acquiring electron diffraction intensities, invented in 1994
by Vincent and Midgley (Vincent et al. 1994), which has
recently gained attention and attracted practitioners as the
preferred means of acquiring electron diffraction patterns
for solving crystal structures, as well as in other diffrac-
tion-based applications (Rauch et al. 2008). In a PED ex-
periment, the beam incident on the thin crystal is pre-
cessed along a cone whose center is the zone axis
orientation. The precession intensities thus represent an
average over these off-axis incident beam conditions. The
individual reflections of the zone axis (out to a maximum
spatial frequency which is determined by the voltage and
the cone semi-angle @) pass through the surface of the
Ewald sphere, and the intensities are integrated over a por-
tion of the reflections’ shape factor or relrod. Because of
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this the intensities better reflect the zone axis Patterson
group symmetry, and they are more tolerant of tilt misori-
entations. In addition, by tilting away from the zone axis,
the severity of the multiple-beam dynamical scattering
may be decreased somewhat, which can improve the ap-
plicability of a kinematical approximation (Own 2005;
Sinkler et al. 2007; Ciston et al. 2008). This latter aspect
raises the hope of more reliable, less dynamical electron
diffraction intensities for use with crystallographic direct
methods for routine structure analysis. This has been
borne out in practice by a large and increasing number of
successful structure analyses which use PED intensities
and generally make use of a kinematical or two-beam ap-
proximation in treatment of the intensity data as a basis
for relating the PED intensities to the underlying structure
(Gemmi eral. 2002; Gjgnnes etal. 2004; Dorset et al.
2007).

While the successes of PED to date may be considered
a breakthrough, it is important to appreciate some of the
limitations. The most significant of these is the absence to
date of an accurate but simple model for interpreting PED
intensities directly in terms of structural information. The
two available simplified models are the kinematical ap-
proximation and the two-beam model. Variants of the two-
beam model have been formulated using different treat-
ments of the precession geometry, for example the Black-
man approach, which integrates all reflections over excita-
tion error S from —oo . . . co (Blackman 1939; Gjgnnes et al.
1998), or a more exact numerical integration over a range
of S determined by a beam’s spatial frequency |g| and the
cone semi-angle @ (Sinkler et al. 2007). Application of
one or another of these simplified models is currently es-
sential for extracting crystallographic information from the
PED data, for example indications of relative structure fac-
tor moduli |U(g)|. However, all these models may readily
be shown to have quite limited validity, and therefore their
use with the data carries a risk that the resulting set of
{|U(g)|} bears little resemblance to the correct values.
The limitations of all models based on kinematical or two-
beam approximations have been made clear in previous
work using accurate many-beam intensity calculations
(multislice or Bloch wave). This demonstration will be
briefly reiterated here. In addition, several characteristics
of PED, which have been revealed using dynamical many-
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beam calculations will be presented. These characteristics
may ultimately result in a more robust simple approach to
treating PED. This is still a daunting task, however, and it
is suggested that ultimately more optimal use of dynami-
cal diffraction for studies of materials with large unit cells
may require a rethinking of the experiment.

Background on dynamical calculations

The precession electron diffraction intensity calculations
presented here rely on two sets of software. The first is a
modification of Northwestern University Multislice and
Imaging Software (NUMIS) multislice code, and the sec-
ond is built around a Bloch-wave formalism to conveni-
ently calculate and store PED intensities. The general ap-
proach in both cases is to calculate and store intensities
for plane wave incidence along a number of orientations
around a precession circuit (typically 1024 settings or
more around the circuit). The intensities from each setting
are summed and on completion are stored in a single file
format, the top row of which contain all the (2-dimen-
sional) h, k values specified for output (listed from left to
right by increasing spatial frequency, starting with the 0,0
beam). Each column below an &, k represents the intensity
I(g,t) of beam g = (h,k) for a sequence of thicknesses
(generally periodic multiples of the unit cell repeat along
the zone axis direction). Each row of the file represents
the precession intensities in the zone axis at a fixed thick-
ness. Auxiliary software was written to extract either the
I(t) for a selected beam g, or the I(g) at fixed thickness ¢
(a precession pattern). Another auxiliary software can be
used to add all intensities with their inversion-pair and
thus halve the computation time for cases of zone axes
with inversion symmetry.

Details on the multislice precession simulations can be
found in (Own efal. 2006). The Bloch wave software is
based on a matrix formulation for dynamical intensities
similar to that described in (Spence efal. 1992; Hum-
phreys 1997), and used the particular arrangement pro-
posed by Allen etal. (Allen etal. 1998), which is de-
scribed here briefly since it is used below. In that
formulation, for a fixed orientation the structure matrix is
written as:

2K,S(h) Uh—g) Uh) Uh+g)
| Ug—-h) 2K.S(g  Ulg) U(2g)
A=5p U(—h) U(-g) 0 Ulg)
" U(-g—-h) U(-2) U(-g) 2K.S(-g)
U(-2h) U(~h—g) U(-h) U(-h+g)

where K, is the length of the electron wave vector, pro-
jected onto the sample surface normal (corrected for re-
fraction by the mean inner potential). The U’s are struc-
ture factors |U(g)|/2K, = 1/(2&,), (&, is the two-beam
extinction distance for reflection g) and S(g) is the excita-
tion error. In a PED experiment, the excitation error for a
ZOLZ reflection g is given as (Vincent et al. 1994)
2

__8
S(g) = g T 8peos O, (2)

where @ is the precession cone semi-angle, and @ is the mo-
mentary angle between the vector g and the center of the
Laue circle as the beam moves along the precession circuit.
Every column and row of the structure matrix can be thought
of as associated with a specific reciprocal lattice vector, rang-
ing in the representation of Eq. (1) from the (h, k) element in
the top left to the (—h, —h) element in the bottom right. The
off-diagonal elements are A; = U(g; — gj)/2K, and in the
current work Aj; = A;’} since absorption is neglected. By solv-
ing the eigen equation AC = [y],, C one obtains the eigen-
vectors of A as the columns of C and the eigenvalues as the
components y; of the diagonal matrix [y],. This was done
using the Lapack FORTRAN routine zheevd.f (Anderson
et al. 1999). When A is expressed as shown in Eq. (1), with
structure factor pairs of +/ — g arranged about the central
element in the central column (Allen et al. 1998), the scat-
tered electron wave’s Fourier coefficients at thickness ¢ are
found as the central column of the scattering matrix S, which
is obtained as S = C [A], €™, in which [A]. is a diagonal
matrix with elements 4; = exp (27iy;t), and the intensities
are the moduli-squared of these central-column elements, for
the beams corresponding to the structure factors in the cen-
tral column of A.

For both the multislice and Bloch wave calculations, in-
elastic scattering is neglected. This is justifiable in the current
case, in which the main purpose is to establish general prop-
erties of PED intensities, and how they differ from single-
orientation transmission electron diffraction patterns. These
general distinctions are independent of the absolute accuracy
of the calculations and thus for simplicity inelastic scattering
was not included. For both multislice and Bloch wave calcu-
lations, the neutral atom form factors of Doyle and Turner
(Doyle et al. 1968) were used.

Many of the questions raised in this work concern is-
sues of how similar two sets of intensities are. For exam-
ple, in addressing how dynamical or kinematical a set of
intensities is we need a metric to compare those intensities
quantitatively with a computed kinematical set. For these
comparisons, the current work relies on the crystallo-
graphic R-factor R1, defined as:

%:lll(g) —abh(g)|
> Lig)

Rl =

3)

U(2h)
U(g+h)

U(h) ; (1)
Uh—g)
2K,S(—h)

For calculating R1, the g = 0 beam is not included in the
sums and a is adjusted to minimize R1. Figure 1 shows a
comparison of PED intensities calculated using multislice
and Bloch wave approaches for the (Ga,In),SnOs structure
(Sinkler et al. 1998; Edwards ef al. 2000), commonly re-
ferred to as gallium-indium-tin oxide or GITO. The plot
shows the R-factor R1 as a function of thickness for all
beams to 1.5 A~! spatial frequency in this structure. The
two computations show excellent agreement, as is revealed
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Fig. 1. (a) R-factor R1 vs. thickness showing agreement between
Bloch wave and multislice precession simulations for (Ga,In),SnOs,
@ = 36 mrad, 200 kV. Conditions for Bloch wave are 3071-beam cal-
culations (all beams below 2.81 A ), using 1024 settings around the
precession circuit. For multislice the conditions were the same except
the potential was sampled to ~10 A™ and the repeat distance was
158 A (1/2 of the b-axis length). (b) It shows a scatter plot of intensi-
ties at 1500 A thickness for all beams except g = 0.

by the scatter plot of multislice versus Bloch wave intensi-
ties at 1500 A (Fig. 1b).

Simplification of diffraction intensities —
demonstration using principal
component analysis

Principal component analysis (PCA) is a statistical analy-
sis of a set of data ‘vectors’, or a series of n characteris-
tics of N individuals in a population (Jolliffe 2004). It pro-

vides an unbiased assessment of the underlying degree of
complexity in the set of n-component vectors. For example,
if all vectors are scalar multiples of each other, then 100%
of the variation could be accounted for by one component,
an n-component unit vector from which all the other vectors
could be obtained using appropriate weightings.

PCA was applied to modeled PED I(g,t) ‘vectors’ for
the GITO [010] zone axis, for various precession condi-
tions, including the unprocessed ¢ = 0 condition (Sinkler
et al. 2007). The I(g,t) vectors were defined as the inten-
sities at increments of the unit cell repeat of 3.16 A from
zero to 948 A inclusive (n = 301). The population con-
sisted of all N =437 unique g-vectors for the zone axis
within a resolution circle of 1.5 A~! radius, i.e. the ‘po-
pulation’ is the set of reflections g, and the ‘vector’ for
beam g is its I(t) curve (set of 301 intensity values from
t=0...948 A). The PCA analysis consists of solving the
eigenproblem

Za=Aa. (4)

Where X is the covariance matrix for the set of N data
vectors (the I,(z)) defined as:

LS g, n) % (g, 1) — 1) x 1(1) (5)

[oF ij = N
Where I(1;) is the average intensity (over all g-vectors) for
thickness #;. Solving the eigenproblem Eq. (4) yields the
eigenvectors a and eigenvalues A. The eigenvectors form a
basis set in n dimensions and the largest variation among
the N I(r) vectors is with respect to the eigenvector corre-
sponding to the largest A. The eigenvalues are in fact the
variances of the data with respect to each of the orthonor-
mal eigenvectors (Jolliffe 2004), and the percent of the
total variability accounted for by any given eigenvector
can thus be expressed as:

Ai
1 6
Sk (6)

J

o; = 100% X

Figure 2a shows the percent of total variation in the set of
I, (1) accounted for by truncating the expansion of the data
vectors at different numbers of eigenvectors, and thus con-
straining their dimensionality. This was done for ,(r) vec-
tors for GITO [010] calculated using multislice for several
different values of the cone semi-angle ¢ at 200 kV. With
increasing ¢, the dimensionality of the variability among
the set of /,(z) is reduced as shown. The ability to account
for all the variation among the different /,(r) with rela-
tively few basis vectors indicates that using precession
simplifies the intensity versus thickness curves, making
the intensities more stable and their variation less chaotic.
This conclusion is also supported by direct inspection of
the I(¢) curves, in Fig. 2b, for the example of the GITO
4, 0, 1) reflection, which has the largest structure factor
in the GITO [010] zone axis. As the precession semi-an-
gle increases, the behavior of I(¢) for (4, 0, 1D goes from
one of rapid oscillations to a single broad maximum and
some slow oscillations about a lower value as thickness
increases.
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Table 1. Percents of variation in I(g,?) for different numbers of prin-
cipal components and cone semi-angles ¢.

No. e=0¢=12 ¢=24 ¢=36 ¢ =48 =60 ¢ =72

69.7 86.2 87.6 87.5 87.7 87.5 89.3
842 944 97.1 91.7 91.5 97.9 91.7
902 959 98.7 98.9 99.0 99.3 99.3
949 97.0 99.3 99.4 99.5 99.6 99.6
963 97.8 99.6 99.6 99.7 99.8 99.8

Fig. 2. (a) Percent of total variation in set
I(g,t) as a function of the number of princi-
pal components, for calculations using a
range of cone semi-angles ¢. (b) plots of I(t)
for GITO (4, 0, 1) reflection in the [010]
zone axis, from multislice, for increasing pre-
cession semi-angle @. With the introduction
- of precession, the behavior transitions from
one of chaotic oscillation to slower-varying
and simpler form, consistent with the statisti-
cal simplification determined with principal
components analysis.
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Failure of kinematical and two-beam models

The simplification of intensities versus thickness in PED
versus a single-orientation zone axis condition suggests
that the intensities themselves may depend on a small
number of underlying parameters. This raises the hope
that if these parameters and dependences can be identified
it might be possible to determine a simple robust model
relating PED to the underlying structure factors and ex-
perimental conditions. However, in spite of extended at-
tempts, no such model has yet been identified by the cur-
rent authors or in the literature. Parameters on which the
PED I(g,f) values might at a minimum be expected to
depend are the structure factor moduli |U(g)| and the spa-
tial frequency |g| (the former representing the inherent
strength of interaction with the incident beam, and the lat-
ter determining the range of excitation errors for a given
cone semi-angle ¢). For a given experimental geometry
(for precession, the semi-angle ¢ and accelerating voltage)

these are the only two quantities which affect the intensity
in both the kinematical and 2-beam approximations. Fig-
ure 3 presents I(r) curves for several reflections, calcu-
lated using multislice for a [010] zone axis of the zeolite
MFI (Olson et al. 1981), for 200 kV accelerating voltage
and a precession cone semi-angle ¢ = 36 mrad. The re-
flections plotted were chosen to represent a narrow range
of |U(g)| and |g| values, and yet the curves exhibit a large
amount of variation, and no apparent correlation with
|U(g)| (i.e. the strongest |U(g)| is by no means the most
intense reflection etc.). This demonstrates that any model
for PED in which the intensities depend alone on |U(g)]
and |g| (including kinematical and two-beam approxima-
tions) cannot account for PED intensities in any satisfac-
tory way. The simplification of the I(g,7) curves obtained
by using PED is an important characteristic of PED, and
is central to understanding benefits such as somewhat
more reproducible sets of relative intensities and the re-
duction in the amount and severity of false minima in re-
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Fig. 3. I(g,t) plots from multislice calculations for zeolite MFI in
[010] zone axis orientation (¢ = 36 mrad, 200 kV). The reflections
plotted were chosen from a narrow range of |g| and |U(g)| values
(see legend). The variation among the curves is considerable, and
shows no apparent correlation with either |g| or |U(g)|.

finements. However, it has not resulted to date in develop-
ment of an improved simplified model for PED.

Reduced dependence of PED intensities on
structure-factor phases

A central feature of both kinematical and two-beam ap-
proximations which contributes greatly to their appeal is
their independence of structure-factor phases. Because of
this, the structure factor moduli may be deduced directly
from experimental data whenever these models are valid,
and the additional complexity of a beam’s phase ¢(g)
need not be considered. By contrast, rigorous dynamical
intensity modeling using multislice or Bloch wave ap-
proaches requires essentially complete knowledge of the
structure, i.e. both structure factor moduli and phases must
be known. This raises the question as to whether the
phase independence exhibited by the simple kinematical
and two-beam models may characterize PED to some lim-
ited extent.

In order to address this, Bloch wave PED calculations
were carried out using the (Ga,In);SnOs [010] zone axis
as a model, with 200 kV accelerating voltage. The U(g)’s
for the structure matrix were assigned using correct kine-
matical moduli and random phases (consistent with the
centrosymmetric p2 plane group, ZOLZ only reflections).
Precession calculations were carried out for six values of
@, increasing from O to 60 mrad. In order to evaluate the
impact of using random phases, the R-factor R1 was calcu-
lated as a function of thickness with respect to precession
intensities calculated with the same approach but using the
correct phases. The R-factors versus thickness are plotted
in Fig. 4a. As expected, the R1 starts at zero for small
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Fig. 4. (a) Plot of R1 for PED intensities in GITO [010] zone axis,
calculated using random phases. The R-factor is calculated relative to
the intensities simulated with all correct structure factor phases. (b)
Illustration of the degree of agreement between intensities simulated
using all correct phases and intensities using random phases, for the
case of ¢ =48 mrad, 345 A thickness (R = 0.45).

thickness (where kinematical conditions give phase-inde-
pendence). For any value of ¢, there is a steep rise initi-
ally to a maximum between about 200—500 A thickness.
However, the extent of the perturbation of intensities due
to use of random phases shows a clear decrease as the
semi-angle increases, so that the worst disagreement at
@ = 48 mrad is R1 ~ 0.4. Figure. 4b shows a scatter plot
of the intensities using random phase versus those using
correct phases (omitting the g = 0 beam), for ¢ = 48 mrad
and t = 345 A. As can be seen the agreement is very ap-
proximate, but does not exceed some kinematical R-factors
for electron diffraction data sets used successfully in struc-
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ture solutions (Dorset et al. 2007). It thus appears feasible
in principle to model approximate PED intensities with
incomplete structural knowledge, particularly for thicker
samples, by using random phases. Unfortunately, the use
of random phases does not simplify or speed up the com-
putation. Thus for example a variational approach to deter-
mining the structure factor moduli, by fitting them to mea-
sured precession intensities in a random phase
approximation (for known thickness) does not appear to
represent a feasible path to improved analyses.

The observation of a reduced phase dependence of
PED intensities raises the question as to how this distin-
guishing feature results from the PED conditions. Does
the reduced phase dependence arise for example as a re-
sult of tilting away from the zone axis, or rather is it asso-
ciated with averaging over many incident beam directions
in the PED experiment? In order to address this, the fol-
lowing simulations were conducted: Single-orientation pat-
terns were simulated using 50 different random sets of
phases, at orientations with increasing tilt ¢ from the ex-
act zone axis direction (for this ¢-series, a non-special
azimuth angle of ®@ = 47 degrees towards (001) from the
reciprocal (100) reflection was kept constant). In addition,
at a fixed tilt of ¢ = 36 mrad, for 50 different random
phase sets, two series of 3 and 5 patterns respectively
were averaged at intervals of +0.35 degrees centered on
the location a = 47 degrees from (100). Finally, for 50
different random phase sets, patterns were averaged at 21
positions at constant ¢ = 36 mrad, separated by 1 degree
each in @, again centered on the same position
(p = 36 mrad, ® = 47 degrees). For each beam g inside a
resolution circle of radius 1.5 A’l, and each thickness ¢,
the average and standard deviation were computed (over
the 50 random phase sets). Finally the relative standard
deviations were averaged over the entire set of beams g,
to get a single value as a function of thickness. This aver-
aged relative standard deviation is plotted in Fig. 5a as a
function of thickness for the four single orientations, and
in Fig. 5b for the four computations at 36 mrad (single
orientation and three averaged cases). All single orienta-
tions show a rapid increase below about 100 A followed
by a constant plateau with a relative standard deviation
close to 1.0 (essentially a standard deviation of the same
size, on average, as the beam intensity). By contrast, even
the averaging of just three closely-spaced orientations
causes a marked decrease in the sensitivity to structure
factor phases. Interestingly, this difference is first notice-
able at relatively large thickness, i.e. the initial rise at
small thickness is the same as for single orientations
(although the maximum value decreases as more orienta-
tions are averaged together).

The decreased sensitivity of PED intensities to struc-
ture factor phases revealed by modeled diffraction using
random phases is thus clearly associated with the aver-
aging of orientations. This reduction of phase sensitivity
occurs even with quite small variation of the incident
beam direction, and a minor reduction in phase sensitivity
would thus most likely occur for any non-PED spot pat-
tern, simply due to unavoidable slight convergence of the
incident beam. The phase sensitivity decreases as more
orientations are added (and more widely varying orienta-
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Fig. 5. (a) The value of the relative standard deviation, averaged over
437 beams within 1.5 A=!, from Bloch wave calculations of the
GITO [010] zone axis for 50 different random phase sets. Four
curves are shown at varying ¢ (with @ fixed at 47 degrees from
(100)). (b) Calculations using the same 50 random phase sets, this
time using averaged incident beam orientations, all with ¢ = 36 mrad
(3, 5 and 21 different orientations averaged as indicated). Single set-
ting curve (@ =36 mrad; @ =47 degrees) is reproduced from
Fig. 5a.

tions). However, there is always some fairly considerable
sensitivity to structure factor phases for PED, and an ap-
proximation based on random phases would be a rough
one. As seen in Fig. 4a, the agreement between a random
phase set and the correct structure factor phases for
(Ga,In);SnOs corresponds to a worst-case R1 of ~0.4 at
large semi-angle ¢. This is clearly a rough approximation,
but nevertheless better than either kinematical or two-
beam approximations for thicknesses beyond a few hun-
dred A for the case of GITO [010] (Sinkler ez al. 2007).
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Use of off-central columns of the scattering
matrix for PED calculations

Due to Bloch wave periodicity in the reciprocal lattice, the
eigenvectors of the structure matrix A obtained for an off-
axis incident beam condition for which K; = h are related
to those for zone axis orientation (K; = 0) by:

Co1,020(K; =h) = Cy1p,2(K, =0). (7)

This involves a cycling of values within a column of the
C matrix. Note that the transverse component of the inci-
dent beam vector (K;) is defined here according to con-
vention as the vector from the Laue circle’s center to the
origin of reciprocal space, i.e. for K, = h the Laue circle’s
center coincides with the reciprocal lattice vector —h. Eq.
(7) is only rigorously valid when a quasi infinite set of g-
vectors is used, i.e. we can ignore effects at the edges due
to swapping rows of C. However, it is reasonably well
fulfilled if the structure matrix formulation (Eq. (1)) ex-
tends to large resolution compared to the tilt vector k. The
eigenvalues of A are unaffected by tilting to K, = h, ex-
cept for the addition of a constant factor |S,| = g*/2K
(the excitation error of beam h referred to the case of
K, = 0). The only effect of this constant on the S matrix
is multiplication by a constant phase factor (see (Spence
1998)). The result is that the off-central columns of the
structure matrix S contain Fourier coefficients for the scat-
tered electron wave for orientations differing by reciprocal
lattice vectors h relative to the central column. In particu-
lar,

Vo (Ki = )| = [Sgnnl (8)

i.e. the row of S corresponding to reciprocal lattice vector
g + h and column corresponding to vector & in the set of
strong beams.

The availability of beam amplitudes for off-axis inci-
dent beam conditions suggests a scheme for improving the
efficiency of dynamical PED -calculations from the ap-
proach described above, which involves on the order of
1000 independent multislice or Bloch wave calculations.
In particular, for large projected unit cells, the high den-
sity of reciprocal lattice points located along or near the
precession circuit may allow the circuit to be approxi-
mated by simply using the nearest g-vector orientations,
for all of which intensities can be obtained by solving a
single eigen-equation.

This was demonstrated using the (Ga,In);SnOs struc-
ture as a model case. In the first approximation, a single
zone-axis (K; = 0) Bloch wave calculation was carried
out. Beam orientations for a precession circuit of 1024
points at ¢ = 36 mrad were calculated and each orienta-
tion was replaced by its nearest g-vector position. In total,
57 orientations were averaged, each weighted by the num-
ber of times it was selected as nearest point to the circuit.
The agreement between this and the full 1024-point calcu-
lation is plotted in Fig. 6 as R1 versus thickness. It is pos-
sible to further improve the approximation of the preces-
sion circuit by adding more eigen-solutions within the first
Brillouin zone, for example at the center of the reciprocal
unit cell at K, = —(0.5, 0.5). The columns of this 2nd S-

0.35
0 4 1 e@gensoluﬁun
— — 2 eigensolutions
———— 4 eigensolutions
— —-— 1 eigensolutions
0.25
0.20
o
0148 o
010
0.05 /,-":_,-""’
0.00 T T !
1] 500 1000 1500 2000

Thickness [A]

Fig. 6. Plot of R1 versus thickness for PED Bloch wave calculations
utilizing off-central columns of the scattering matrix to obtain intensi-
ties at reciprocal lattice tilts. The curves represent different numbers
of eigensolutions for tilts within the reciprocal unit cell. As the num-
ber increases, the approximation of the precession circuit improves.

matrix thus contain diffraction amplitudes for orientations
related to the incident beam direction plus any g-vector.
Use of these orientations interspersed within those for
K, = 0 result in a better approximation of the precession
circuit. The additional curves in Fig. 6 shows Rl versus
thickness for cases of 2, 4 and 8 eigen-solutions within
the reciprocal unit cell. The time required for the 8 eigen-
solution case was less than 15 minutes on a mid-range lap-
top (for 3071 beams), plus an additional ~1 minute to
read in the eigenvalues and eigenvectors and calculate the
intensities for a single thickness. By comparison, the use
of 512 discrete eigensolutions (1024 with symmetry) for
the PED intensities requires about 12 hours computing
time.

The availability of information on off-axis diffraction
patterns provides an additional opportunity for insight into
the phase-independence arising from averaging over differ-
ent orientations which was the topic of the previous sec-
tion. Specifically, the phase-independence suggests that the
sum or average of the intensities for a specific beam g
obtained from a single S-matrix by Eq. (8) would result in
a quantity which has weakened dependence on the struc-
ture factor phases. This was verified by computing S for
ten different random phase sets at K, = 0, and averaging
intensities for all beams g, where the average was taken
over columns corresponding to tilt ranges inside of limits
of ~0 mrad (central column only), 12 mrad (89 columns),
24 mrad (357 columns) and 36 mrad (801 columns). The
R-factor R1 was calculated relative to the same calculation
with all correct phases and the average of this (over the
ten random phase sets) is plotted as a function of thick-
ness in Fig. 7. As can be seen, the expected reduction of
phase-independence found using discrete eigen-solutions
at different incident beam conditions is also reproduced in
the entries of a single S-matrix.
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Fig. 7. Plot R1 for random phases relative to calculation with correct
structure factor phases. Single Bloch wave calculations were per-
formed for ten random phase sets for the GITO [010] zone axis. For
each of these, intensities were averaged from a number of off-central
columns of the scattering matrix to simulate all g-vector tilts located
within cones of the indicated semi-angle. The 0, 12, 24 and 36 mrad
cases average over 1, 87, 357 and 801 orientations respectively. For
each random phase set, Rl was computed with respect to the correct
phase set and the average of the ten Rl vs. thickness curves is
plotted.

Discussion

The present work has explored aspects of PED by using
many-beam dynamical simulations. Two central features
which have been demonstrated here are

1) the reduction of complexity in the beam intensities

versus thickness, demonstrated using principal com-
ponent analysis

2) the reduced sensitivity of PED intensities to struc-

ture factor phases.

Both of these features, and certainly the 2nd, have
more general applicability beyond PED, to any case in
which diffraction intensities average together even a rela-
tively small amount of variation of the incident beam di-
rection. This was shown here in Figs. 5 and 7, where the
averaging of the incident beam direction is either smaller
than for PED, or using averaging over tilts corresponding
to discrete reciprocal lattice vectors (Fig. 7). Finally, an
improved means of computing precession using a much
smaller number of eigen-solutions has been found, by
using off-central columns of the scattering matrix S. One
underlying assumption in this work is that the best route
to understanding the intricacies of PED (and for placing
any electron diffraction experiment into a more rigorous
relation with the scattering potential) is through the use of
many-beam calculations. The argument that this model
needs to be modified by adding other phenomena, such as
the proposed secondary scattering (Cowley efal. 1951;

Dorset 2003), does not appear to us to be convincingly
demonstrated, and conversely, neither has the inadequacy
of the many-beam model. If secondary scattering is occur-
ring, it is notably missing from studies using convergent-
beam diffraction (which, with energy filtering can provide
highly accurate agreement with many-beam theory (Tsuda
etal. 1999). Other problems involve the use of this phe-
nomenon to simulate patterns, for example the presence of
adjustable parameters and the entire question of how to
combine it in some stable form with many-beam scatter-
ing.

The motivation for the current work was not limited to
better understanding the properties of the PED intensities,
including how well they approximate two-beam or kine-
matical models, but it was also hoped to develop im-
proved models for relating the PED data to the underlying
structure. In this last aspect, the work has fallen short of
its goal and it is worth assessing the prospects for success
in this regard. While the advantages of PED described in
the Introduction are well known in the community of elec-
tron crystallographers, the attempt to place PED on a
more rigorous footing has not yielded much in the way of
concrete useful advances. This suggests that the complex-
ity of the physics relating the underlying structure investi-
gated to the observed intensities is simply so great as to
be intractable. In spite of the significant advance that it
represents, PED may not fully answer the need for a tech-
nique which is convenient, applicable to unknown struc-
tures with large unit cells (and beam sensitivity), and yet
which also permits rigorous measurement of structure fac-
tor moduli. In lack of a rigorous relationship of PED in-
tensities to the atomic arrangement in an unknown struc-
ture, successful application of PED in electron
crystallography is by no means assured, but will be in-
creasingly likely with skill and persistence of the micro-
scopist in obtaining patterns from the thinnest possible re-
gions.

The availability of g-vector tilted beam amplitudes in
the scattering matrix suggests there may be much benefit
in modifying the precession experiment to collect a series
of diffraction patterns for which K; is adjusted sequentially
to coincide with a set of g-vectors. Such an experiment
would provide a close equivalent of PED by averaging
intensities taken at selected orientations. However what-
ever it may lose in convenience (time to acquire and pro-
cess the patterns, as well as somewhat less suitability to
beam-sensitive materials) it may gain in the enhanced abil-
ity to use the much greater accuracy of dynamical calcula-
tions as a physical model. The notion of using multiple
diffraction patterns acquired with different incident beam
conditions has been proposed by other authors in the con-
text of inversion algorithms for directly obtaining the scat-
tering potential (Allen eral. 1998; Spence 1998; Allen
etal. 1999; Spence et al. 1999; Allen et al. 2008). There
is a large range of possibilities as to how such data might
most effectively be used. One point of particular interest
which has long been recognized and is evident in some of
the simulations shown above is the sensitivity of dynami-
cal intensities to the structure factor phases. Therefore,
due to the relative speed with which a single eigensolution
can be obtained, the availability of several patterns taken
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at different orientations may provide the basis for a physi-
cal test of the suitability of different sets of phases result-
ing from direct methods. Nevertheless, there are many
challenges to overcome in this area. The dynamical calcu-
lations are highly sensitive to accuracy of the inputs and
intolerant of incompleteness (e.g. limited resolution).
Some of the proposed experiments are very far from the
simplicity and broad applicability of PED, and real appli-
cations to unknown structures (or even large unit cells) are
missing. In spite of the many challenges, this type of ap-
proach using precession devices (now widely available)
for multiple-orientation patterns may ultimately provide
the best route to integrating rigorous many-beam theory
with electron diffraction experiments for solving unknown
structures with large unit cells.
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