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Fig. 3B and Table 1, the emission lifetime and
quantum yield of the 3MLCT excited state of
[Co(pyacac)3{Re(bpy)(CO)3}3]

3+ are identical to
that of the GaRe3 model complex, an observation
that indicates a complete absence of reactivity
between the charge-transfer excited state of the
Re-bpy fragment and the CoIII core.

An analysis of the spin-coupled pathways
for dipolar energy transfer available in these two
systems provides a surprisingly simple explanation
for this marked difference in photophysical be-
havior (Fig. 4). In both compounds, the 3MLCT
excited state has a spin multiplicity of |SD*| = 1;
energy transfer from this state to the M(pyacac)3
core results in reformation of the singlet ground
state of the Re-bpymoiety (|SD| = 0). In the case of
M=CrIII, the 4A2 ground state (|SA| = 3/2) creates a
spin manifold in the reactant angular momentum
space spanning |SR| = ½, 3/2, and 5/2; this requires
coupling to an excited state of the acceptor char-
acterized by |SA| = ½, 3/2, or 5/2 in order to realize a
spin-allowed pathway. Angular momentum con-
servation is clearly satisfied with the 4T2 excited
state of the CrIII core (|SA*| = 3/2), as are thermo-
dynamic considerations by virtue of the resonant
condition that exists between the Re-bpy emission
and the 4A2→

4T2 absorption. Thus, dipolar energy
transfer can proceed through the commonality of
S = 3/2 states in both the reactants and products,
and excited-state quenching of the 3MLCT emis-
sion is observed. Upon replacement of CrIII by
CoIII, the thermodynamics of energy transfer are
essentially unchanged; however, the low-spin d6

configuration of the Co(pyacac)3 core fundamen-
tally alters the momentum conservation condition.
Specifically, the phosphorescent nature of the
3MLCT→ 1A1 emission requires coupling to an
excited state of the CoIII having |SA*| = 1, not |SA*| =
0, which defines the 1A1 →

1T1 absorption. Di-
polar energy transfer is therefore spin-forbidden
for theCoRe3 assembly, thus giving rise to emission

from the Re-bpy luminophore that is indistinguish-
able from that of the GaIII model complex.

Although the chemical systems just described
were designed specifically to illustrate the prin-
ciple of angular momentum conservation in di-
polar energy transfer, it does not appear to us that
this formalism should be limited to energy trans-
fer. In principle, a parallel set of expressions for
any chemical reaction could be drafted in which
consideration of reactant and product angular
momenta serves to differentiate various thermo-
dynamically viable pathways. It seems likely that
the issues raised herein will manifest more read-
ily in inorganic rather than organic systems be-
cause of the broader array of spin states generally
accessible in such compounds; however, we be-
lieve that the underlying concepts reflected in this
simple formalism and experimentally verified in
our study should be generalizable across a wide
array of chemical processes.
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Graphitic Tribological Layers in
Metal-on-Metal Hip Replacements
Y. Liao,1 R. Pourzal,2 M. A. Wimmer,3 J. J. Jacobs,1,3 A. Fischer,2,3 L. D. Marks1*

Arthritis is a leading cause of disability, and when nonoperative methods have failed, a prosthetic
implant is a cost-effective and clinically successful treatment. Metal-on-metal replacements are
an attractive implant technology, a lower-wear alternative to metal-on-polyethylene devices.
Relatively little is known about how sliding occurs in these implants, except that proteins play
a critical role and that there is a tribological layer on the metal surface. We report evidence
for graphitic material in the tribological layer in metal-on-metal hip replacements retrieved from
patients. As graphite is a solid lubricant, its presence helps to explain why these components
exhibit low wear and suggests methods of improving their performance; simultaneously, this raises
the issue of the physiological effects of graphitic wear debris.

Arthritis, or rheumatism, is the leading
cause of disability, affecting an estimated
8.6 million people in the United States

as of 2005 (1), with comparable estimates else-
where. By 2030, the number of American adults

aged 65 and older (the segment of the population
with the highest prevalence of arthritis-related
disability) will double to ~71 million (1). For
individuals afflicted with end-stage arthritis of the
hip, arthroplasty is the most cost-effective and

clinically successful treatment. Currently, up to
three total hip replacement procedures per 1000
inhabitants are performed in countries belonging
to the Organisation for Economic Co-operation
and Development (2); Germany leads with the
largest number of replacements per capita, and
the U.S. performs the most procedures overall.
As of 2003, ~202,500 primary total hip replace-
ments were performed annually in the U.S. By
2030, this number is expected to increase by more
than 174% to ~572,000 hip replacements. Arthritis
of the hip has an increasingly large public health
impact in terms of morbidity, disability, and the
cost of disability and treatment. To minimize the
impact on the individual patient and society, it
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is imperative that hip replacements are durable,
ideally lasting for the extent of the patient’s life.

Unfortunately, the materials currently used in
hip replacements have limited durability, in large
part due to degradation in service. The degradative
processes include wear and corrosion, and the pro-
ducts are bioreactive species (micrometer- and
nanometer-sized particulate debris andmetal ions)
that interact with local tissues producing an ad-
verse response that may lead to implant failure
and require revision surgery.Another leading cause
of total hip replacement failure is postoperative
instability (dislocation) (3), which can beminimized
by the use of large-diameter femoral heads. This
explains the popularity of metal-on-metal (MoM)
bearings; for instance, as used in up to 35% of the
primary total hip replacement procedures per-
formed in the U.S. MoM bearings are attractive,
as they have less wear than metal-on-polyethylene
bearings, thereby minimizing debris-associated
failures. In addition, their mechanical properties
allow thin-walled acetabular components so that
large femoral heads can be used. Furthermore,
MoM bearings allow hip resurfacing procedures
that help to preserve femoral bone stock, which
is highly desirable for young patients.

However, there are increasing reports that
MoM total hip replacements and surface replace-
ments are not immune to the adverse local tissue
responses due to degradation products generated
by wear and corrosion that were observed with
earlier metal-on-polyethylene bearing couples
(4). In April 2010 and February 2011, the regu-
latory agencies of the UK and the U.S., respec-
tively, issued alerts for MoM hip replacements.
These problems seem to be related to specific im-
plant designs as well as nonoptimal positioning,
and there are prostheses that have been working
successfully in patients for decades (5).

For current MoM bearing hip replacements,
which almost always involve austenitic cobalt-
chrome-molybdenum (CoCrMo) alloys, a fair
amount is known about the metallurgy far below
the sliding contact region (microns away) (6).
Although the metal plays an important role in

load bearing, there must also be some lubrication
mechanism within the human body, as otherwise
the wear rates would be prohibitive and severe
metal toxicity would be common. Protein in the
surrounding fluid is known to play a critical role
forMoM replacements (7–10). To date, relative-
ly little is known about the region where active
sliding takes place (boundary lubrication), the
triboactive region—only that there is a carbon-rich
layer. Wimmer et al. examined 42 retrievedMoM
McKee-Farrar prostheses and reported that more
than 80% of them exhibited tribological layers
adhered firmly to the surfaces with varying thick-
nesses (11). The tribological layer was also formed
on metal components in simulator tests in bovine
serum. It was suggested that this layer was gen-
erated during operation in human synovial fluid
or bovine serum environments (6, 12). Analyses
showed that this tribological layer contained
nanoparticles (presumably detached from the
substrate) of the metal and a substantial amount
of carbon along with possible calcium, oxygen,
phosphorus, magnesium, nitrogen, sodium, and
chlorine (11, 13, 14). However, relatively harsh
methods, which could easily damage carbon-
containing compounds, were used to prepare the
samples. Other experiments, focusing more on
the degradation products with some surface char-
acterization (15, 16), also point toward a tribo-
logical layer with different chemistry/properties
playing a critical role, plus some chemical changes
as lower–molecular weight fragments were ob-
served. It has been commonly assumed (without
proof) that the tribological layer is made up of
denatured proteins (6, 11, 15–18); that is, proteins
that have lost their higher-order structure, with
perhaps some minor chemical changes. As such,
it would be intrinsically biological in character,
similar to lubrication in natural joints. We find,
however, that this layer is very different both in
form and function, having more in common with
lubrication of a combustion engine than lubri-
cation of a natural joint.

Our initial aim was to understand the tribo-
logical layer, mainly the embeddedmetallic nano-

particles, and to look for processes such as carbon
segregation to grain boundaries in the near-surface
region of the metal. In the process of routine ini-
tial characterization by transmission electron mi-
croscopy (TEM) of samples thinnedwith a focused
ion beam (FIB), we noticed that electron energy-
loss spectra (EELS) showed a strong p* prepeak, a
well-known fingerprint of graphitic carbon (19,20);
high-resolution electron microscope (HREM) im-
aging experiments suggested a similar conclu-
sion (see figs. S1 and S2).

By itself, this is not sufficient proof of gra-
phitic carbon, as the electron beam in the mi-
croscope can change organic materials; one also
needs to be concerned about the sample prepa-
ration methods. For a definitive test, we need to
rule out artifacts from both of these techniques.
We therefore used a nanomanipulator inside a
dual-beam scanning electron microscopy/FIB
system to scrape the tribological layer off of
samples retrieved from patients, as shown in
Fig. 1. We then generated two control samples
(21): (i) dried bovine calf serum, scraped off a
substrate made of CoCrMo alloy using FIB under
the same conditions (control 1), and (ii) free-
standing dried bovine calf serum film on either a
copper grid or a silicon membrane (control 2).

Fig. 1. (A) The tribolog-
ical layer (dark region)
was scraped off with the
use of a tungsten probe
in the FIB. (B) The film
was attached to a copper
TEM grid.
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Fig. 2. EELS spectrum of the serum dried on a
copper grid for different electron doses, with the
49 e/Ǻ2 spectrum offset by 100,000 counts. The
change with a dose of 3.8 × 104 e/Å2 was minimal.
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Comparing control 1 with control 2, the car-
bon peak of the bovine calf serum scraped off
using the microprobe in the FIB is essentially the
same as that of serum dried directly on a copper
grid or a silicon membrane, indicating that spec-
imen preparation in the FIB did not generate any
graphitic carbon.

From the control experiments (Fig. 2), we
observe that a total dose of ~3.8 × 104 electrons
(e) per Å2 does not severely disturb the control
samples. It is worth noting that the carbon p*
peak did form under a very high electron dose of
5 × 108 e/Å2 (fig. S3). A final calibration experi-
ment was to look at the change of the EELS

spectrum as a function of dose for the tribological
layers. Supplemental fig. S4 shows that EELS
spectra of the tribological layer did not display
any discernible change up to a dose of 1.1 × 105

e/Å2. Thus, the electron dose did not affect the p*
intensity during initial low-magnification TEM
imaging and EELS spectrum collection, as would
be expected based on work on tribo-induced gra-
phitic material in nearly frictionless carbon (22).

The main experimental results are shown in
Fig. 3. A total of three samples [from the first re-
trieval (21)] analyzed with a dose of ~58 e/Å2 all
showed a clear, strong pre-edge p* peak as well
as low oxygen signals, as did additional samples
retrieved from two other patients, one from each
(21). In some areas calcium was also present,
which we believe came from bone fragments.
Using highly ordered pyrolytic graphite as a
calibrant, we determined the amount of graphitic
carbon as ~82% based on the intensities of the
p* and s* peaks (23, 24). The tribological layer
did not have any nitrogen, whereas dried bovine
calf serum exhibited a strong nitrogen peak. Bovine
calf serum dried on a copper grid has experimental
C:N:O molar ratios of C:N:O = 1:0.17:0.46 in the
EELSdata (25),whereas for bovine serum albumin
the true ratios are C:N:O = 1:0.27:0.30. The C:O
molar ratio in the tribological layer is C:O = 1:0.07.
Using the oxygen-integrated edge signal from con-
trol 2 as a calibrant, we estimate the atomic percent
of oxygen in the tribological material to be 5%.

Figure 4 shows a typical HREM micrograph
of the tribological layer along with a power spec-
trum; every area thin enough for good imaging
that was examined showed similar results. Short-
range ordered regions are present with a typical
size of several nanometers. The spacing of the
dominant fringes in the image was measured to
be ~0.34 nm, confirming that the tribological lay-
er was primarily partially graphitized carbon.

As a secondary confirmation, a Raman spec-
troscopy result for the tribological layer from
the first retrieval is shown in Fig. 5. A broad G
line corresponding to the stretch vibration of
sp2 bonding was present, together with a strong
D line around 1383 cm−1 corresponding to the
breathing vibration in disordered sp2 carbon (26).
For comparison, both the G and D lines were
absent in the dried serum on a CoCrMo sub-
strate (fig. S5). The G-line position of the tribo-
logical layer was 1567 cm−1, slightly shifted from
1580 cm−1 of graphite crystal due to the forma-
tion of nanocrystallites (27). Using the analysis of
carbon structures by Ferrari and Robertson (27),
the tribological layer was in between nanocrystal-
line graphite and amorphous sp2 carbon [stage
2 in (27)] and was closer to the nanocrystalline
side. The fraction of sp2 bonding was determined
from the G-line position to be >80% based on the
plots in (27, 28). Note that the presence of a broad
D line also indicated the existence of disordered
graphitic carbon. The graphitic domain size (29),
La, can be calculated from the relative intensities
(21, 29, 30) as 4.5 nm, consistent with theHREM
observations.

Fig. 4. HREM image of
the tribological layer.
Short-range ordered gra-
phitic material with a
grain size of a few nano-
meters is present. The in-
set power spectrum shows
that the dominant spacing
is ~0.34 nm.

Fig. 5. Raman spectrum of the tribological layer
for a CoCrMo hip implant after background sub-
traction showing the G (red) and D (blue) lines. The
data has fit using two Gaussian peaks (purple).
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Fig. 3. EELS spectrum of the tribological
layer, dried bovine serum, and graphite.
The p* peak is absent in the dried serum
but clearly present in the tribological
layer, with an sp2 bonding fraction of
82%.
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Similar Raman spectra to Fig. 5 indicating a
graphitic tribological layer were found at dif-
ferent locations of the first retrieval and from four
other retrievals [both wrought and cast alloys
(21)], as well as in pin-on-ball tests. Spatially
resolved Raman imaging (fig. S6) indicated a
definitive correlation between where the gra-
phitic Raman signal came from and where the
tribological layer was present. It should be noted
that there is extensive literature evidence for a
comparable tribological layer in many other re-
trievals and in simulator tests.

All of the data indicate that the tribological
material has a graphitic content similar to par-
tially graphitic carbon. Although we cannot rule
out a small impurity of protein in the tribological
layer, the fact that there is minimal nitrogen, that
a high sp2 fraction precludes a high hydrogen
content, plus the correlation of the Raman and
HREM data as to the structure allow us to infer
that the fraction of protein is less than 5%, and
any protein present should be considered as
partially degraded rather than denatured protein.

There are three immediate consequences of
this result—the first two are important for ortho-
pedic applications, whereas the other is an issue
for concern. The first is that graphite is a standard
solid lubricant that is known to perform well in
the presence of water (31, 32) and should operate
similarly in vivo. In the tribological region, it will
serve this purpose, reducing friction as well as
corrosion and wear, similar to solid lubricants in
an engine. More than just flash-heating or fric-
tional shear of proteins is leading to this layer;
instead major chemical changes are taking place
that have been hinted at in the degradation product
analyses mentioned earlier. Although we do not
know the precise mechanismwhereby the graphitic
material is formed, it is known that many transition
metals (here, probably cobalt) will act as catalysts to
eliminate water or ammonia from organic ma-
terials (33, 34), similar to the well-known coking
of heterogeneous catalysts; fresh metal surfaces
exposed by wear should be good catalysts. As a
crude estimate, the composition of albumin is
C3076H4833N821O919S42, and eliminating water,
ammonia (and hydrogen sulfide) would give a
nominal composition of C3076H448, which is com-
parable to typical hydrogenated carbon films
used to reduce friction. There is extensive evi-
dence for the formation of graphitic material from
other carbon allotropes during sliding, so a con-
version from more disordered or amorphous car-
bon to a graphitic material is expected.

The second consequence is that there is now
a design target for improving implants. For instance,
one could design to improve adhesion of the gra-
phitic layer to the metal or to promote its formation
by changing the alloy composition and thus reduc-
ing wear, friction, and corrosion. Biocompatibility
of any additives will be an issue, so the problem
is not as simple as designing a better alloy.

Lastly, as a caution, wear of this graphitic
material is going to lead to the formation of gra-
phitic fragments in the pseudosynovial fluids,

and these can be transported to cells in the nearby
regions. The recent finding (4) of a lack of cor-
relation between tissue damage and volumetric
wear rate suggests that factors other than cobalt-
alloy wear debris may be contributing to adverse
tissue reactions. Graphitic carbon may be one
such factor; further research is needed.

In summary, we have presented clear evi-
dence that the tribological layer in MoM hip
replacements is primarily graphitic carbon. This
material forms a layer that reduces friction as
well as wear and corrosion and suggests a route
for the design of improved implants, although
there might be physiological implications asso-
ciated with graphitic wear debris in patients.
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Evidence from Numerical Experiments
for a Feedback Dynamo Generating
Mercury’s Magnetic Field
Daniel Heyner,1* Johannes Wicht,2† Natalia Gómez-Pérez,3† Dieter Schmitt,2

Hans-Ulrich Auster,1 Karl-Heinz Glassmeier1,2

The observed weakness of Mercury’s magnetic field poses a long-standing puzzle to dynamo theory.
Using numerical dynamo simulations, we show that it could be explained by a negative feedback
between the magnetospheric and the internal magnetic fields. Without feedback, a small internal
field was amplified by the dynamo process up to Earth-like values. With feedback, the field strength
saturated at a much lower level, compatible with the observations at Mercury. The classical saturation
mechanism via the Lorentz force was replaced by the external field impact. The resulting surface
field was dominated by uneven harmonic components. This will allow the feedback model to be
distinguished from other models once a more accurate field model is constructed from MErcury
Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and BepiColombo data.

In March 2011, the MErcury Surface, Space
ENvironment, GEochemistry, and Ranging
(MESSENGER) mission (1) entered orbit

around Mercury. One of its objectives is to ex-
plore the planet’s magnetic field, which is pre-
sumed to be generated by a dynamo operating
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