
Elastic Strain Energy Effects in Faceted Decahedral Nanoparticles
Srikanth Patala,† Laurence D. Marks,† and Monica Olvera de la Cruz*,†,‡

†Department of Materials Science and Engineering and ‡Department of Chemistry, Northwestern University, Evanston,
Illinois 60208, United States

ABSTRACT: Decahedral morphology, with re-entrant surface modifications,
is one of the common structures observed in nanoparticles. These motifs,
although thermodynamically stable only at very small size ranges, have been
experimentally observed to grow up to much larger sizes (100 nm to several
micrometers). Whereas the surface energy plays an important role, the con-
tributions of the elastic strain energy are nonnegligible at larger sizes and the effect of stress relaxation due to re-entrant surface
faceting is poorly understood. In this article, the volumetric strain energy due to the disclination defect is computed using finite
element analysis and the relaxation due to the formation of re-entrant surfaces is shown. Contrary to conventional wisdom, the
disclination strain energy is shown to be a nontrivial function of the geometry and in general increases with increasing aspect
ratio. The computed strain energies also result in approximately 50% increase in the stability regime than the previously reported
results obtained using thermodynamical analysis. Finally, finite element analyses are utilized to explain the commonly observed
defect configurations and compute the internal rigid body rotations in these particles.

■ INTRODUCTION

Metallic nanoparticles (NPs) have found applications in a wide
variety of technologies. In particular, decahedral-shaped NPs
have garnered special attention due to their remarkable plasmonic1,2

and optical properties3,4 and due to the possibility of enhanced
catalytic activity.5 There has also been a renewed interest in the
decahedral NPs since they exhibit nonconvex polygonal shapes
due to re-entrant faceting. Nonconvex shapes offer the possibility
of creating new materials through a range of lattice packings with
very high densities.6Moreover, the pentagonal shapes are inherently
strained due to the disclination defect7 offering distinctive design
opportunities such as using the strain energy distribution to alter
the local composition of bimetallic nanoparticles to improve
their properties. A variety of potential functional applications for
decahedral-shaped NPs have led to more practical investigations
in their structure, morphology and synthesis.
As important as the chemistry of the decahedral NPs is in

governing properties, of equal importance is the structural aspect
relating to their morphology. For example, the catalytic prop-
erties depend on the crystallographic orientations of the surfaces,8−10

optical properties are influenced by the size and the shape of
NPs,11−14 and surface functionalization, which is important in
many drug delivery applications, depends on the surface struc-
ture of NPs.15,16 Therefore, a precise control of the shapes of NPs
during synthesis is of immense technological importance. There
have been many experimental advances in nanoparticle syntheses,
which allow for the ability to manipulate the size and nano-
morphology of decahedral-shaped NPs.17−22

Despite the importance of the decahedral NPs and the ex-
perimental advances in synthesizing them, there is a lack of
rigorous mechanistic understanding of the evolution of their
morphology. The contributions of the various key energetic
parameters that control the shape of these NPs is unclear. For
example, although thermodynamic stability analysis of NPs
predict the presence of decahedral shapes only at very small sizes

(usually <5 nm),23,24 these inherently strained structures are
observed at much larger sizes and in some cases grow into the
micrometer size range.22,25,26 These large pentatwinned struc-
tures are usually grown from solutions and manifest in various
geometries with diverse aspect ratios and other features such as
re-entrant grooving along the twin boundaries.27 It has been
hypothesized19,22 that the morphology of the decahedral-shaped
nanocrystals can be explained through a combination of kinetic
effects and the strain energy contribution. However, such arguments
are qualitative and an explicit computation of the shape-dependent
volumetric strain energy is missing.
In this article, we use a continuum mechanics approach (with

finite element method) to compute the shape-dependent volumetric
strain energy in decahedral particles, which is then incorporated in
the thermodynamic stability analysis for nanoparticles.23

Although the role of the volumetric strain energy is not significant
in modifying the shape from the thermodynamic shapes computed
at small sizes for decahedral NPs,28 at larger size ranges we show the
strain energy contribution due to the disclination defect is significant
and the energetically preferred geometry is always the onewith a low
aspect ratio (pancake-shaped) and high re-entrant grooving.

■ METHODS

In order to address some of the fundamental questions regarding
the growth and stability of these decahedral-shaped NPs and
to bridge the gap between experiments and theory, a rigorous
thermodynamic stability analysis is essential. One of the most
significant energy contributions for decahedral-shaped NPs is the
strain energy per unit volume (WV

D), which depends on the shape
of the nanoparticle. The strain in these NPs is generated because
unstrained single-crystal segments in the multiply twinned structures
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are not space-filling and the gaps are closed by an angular strain
resulting in disclination defects. For example, the decahedral nano-
particles have one disclination line defect along the common line of
the five segments and the icosahedral particles have six disclination
line defects holding together 20 single crystal segments. In this
article, the focus is on the role played by the contribution of the
volumetric strain energy of the disclination defect on the stability of
the decahedralNPs.We start with an expression of the free energy in
terms of the volumetric and surface energy contributions as
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where V is the volume of the nanoparticle,ΔG̅f is the change in free
energy per unit volume (from liquid to solid), γ is the surface free
energy, WS is the surface strain energy density term (consisting of
the surface stress tensor) and A is the area of the crystallographic
facet. The subscript i refers to various crystallographic facets present
on the surface and subscript t refers to the {111} twin boundary in
the pentatwinnedNPs. The higher-order terms comprising the edge
and corner energies and the strain energy due to lattice compression
(arising from the surface stress) are small except for very small
cluster sizes and are neglected here. The advantages of using a
multiscale thermodynamic analysis, as compared to atomistic or ab
initio simulations, include its applicability to larger size ranges and a
wide array of shapes. It is also very powerful since it can applied to
different systems (e.g., varying the solution chemistry) by evaluating
a minimal number of parameters (surface energies etc.). More
recently, such thermodynamic analysis has been successfully used in
the Wulff construction of alloy NPs.29 The applicability of thermo-
dynamic analysis for very small clusters has been validated using
atomistic simulations of nickel icosahedral and decahedral struc-
tures24 and will not be discussed further in this article.
The per-volume strain energy WV

D is expected to vary with
geometrical features especially since the re-entrant grooving in
these structures can provide elastic stress relaxation.22,30 Hence it
is essential to compute the variation of the elastic strain energy as
a function of the geometrical aspects in these structures. Previous
studies involving the computation of strain energies have largely
been analytical or involved simulations either at the classical ab
initio level or at the atomistic level. The analytical studies range
from homogeneous isotropic calculations31,32 to inhomogeneous
computations with anisotropic stiffness tensor.7,23,30,33,34 However,
these strain energy computations have been performed only for
the distortions in a single-crystal tetrahedral unit without con-
sidering more complicated shapes commonly found in practice.

Classical ab initio methods and atomistic simulations may be
used to compute these energies for the complete decahedral
nanoparticle; however, these calculations are limited to small
sizes and it is difficult to isolate the contribution of the strain
energy.24,35−37 There also exist approximations in these
computationswith density functionals in the case of ab initio
methods and force-field potentials in the case of atomistic sim-
ulations. These methods have also been limited to simple geo-
metries of the decahedral particles.

Finite Element Analysis. In this article, we use a continuum
method, the finite element analysis (in ABAQUS38), to compute
the strain energy density in decahedral-shaped particles with twin
boundaries. For completeness we note that for a finite body, with
a fixed geometry and without external tractions, the strain energy
of the disclination defect is linear with volume if no core cutoff
is used. While the stresses and strains for a disclination are
nominally singular on the axis, unlike the case for dislocations,
the strain energy per unit volume remains finite. Finite element
analysis (FEA) is a numerical technique for solving partial dif-
ferential equations and has been used extensively in a wide variety
of engineering problems, especially in the field of elasticity, heat

Figure 1. (a) A typical decahedral nanoparticle. The geometric parameters a, β, and hr are such that a = AC + CE, β = (EG/a), and hr = (AB/a). The
remaining geometrical units can be expressed as a combination of the parameters a, β, and hr as CE = a/2(1 − β), AC = a/2(1 + β), and EF = a(hr− 1).
βL is the parameter introduced by Ino and utilized by Marks28 to describe the grooving factor and is equal to the ratio β/hr. Parts b, c, d, and e show
illustrations of particles with different values of the re-entrant grooving factor β and the aspect ratio hr.

Figure 2. Variation of per-volume strain energy WV
D with geometric

parameters β (grooving factor) in the range [0,1] and hr (aspect ratio) in
the range [1,25].
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transfer, and fluid mechanics.39 The basic idea of FEA is to
discretize the space using elements and approximate the solution
field through suitable interpolating functions across these elements.
This technique allows for solutions of elasticity equations on
predefined elements that discretize the complex geometry of the
system. This capability makes FEA specially suited for investi-
gating strain energy densities in decahedral NPs with varying
aspect ratios and extent of re-entrant grooving. In addition to the
flexibility with changing geometry of the particles, FEA facilitates
incorporation of nonlinearities, twin boundaries, and elastic
anisotropy. The result of this analysis is that the strain energy as a
function of the geometric parameters can now be computed,
which may be used in the stability analysis for the nonequilibrium
decahedral NPs.

In order to verify the applicability of the FEA for modeling the
disclination defect, the strain energies of infinitely long cylinders
(simulated using two-dimensional disks with the plane-strain
condition40) of varying radii with a disclination defect (wedge
opening of angle ΩD = 2π − 5 arccos(1/3) ∼ 7.36° to mimic
the decahedral NPs) have been computed and compared with de

Figure 3. Geometric parameters (β,hr,βL) for which the energy in eq 1 is minimized. These plots show a deviation from the modified Wulff form for
decahedral nanoparticles,28 which predicts a constant βL = (1 − (γ{100}/(√3γ{111}))). These parameters are plotted as a function of the ratio req/γ{111},
where req = (3V/4π)1/3, V is the volume of the particle, and γ{111} is the {111} surface free energy.

Figure 4. Optimal geometric parameters (a) β and (b) hr for which the energy in eq 1 is minimized. These parameters are plotted as a function of the
ratios req/γ{111} and γ{111}/γ{100}. Here req = (3V/4π)

1/3, V is the volume of the particle, and γ{111} and γ{100} are the {111} and {100} surface free energies,
respectively.

Table 1. Comparison of Transition Radii, from Decahedral to
Single-Crystal Wulff Shape, Obtained Using the Strain Energy
Computed with ABAQUS (Column 2) and HM’s23 Estimate
(Column 3) Obtained Using an Isotropic Approximation for
the Disclination Strain Energy

material crossover radius (nm) Howie−Marks23 (nm)

gold ∼7.78 ∼5.6
silver ∼6.72 ∼4.7

Figure 5. A ratio of the strain energy of decahedral NPs with optimal
geometric parameters and the HM estimate of disclination strain energy
(isotropic estimate23) plotted against req/γ{111}. The strain energy
obtained using ABAQUS is approximately 75% of the isotropic estimate.
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Wit’s analytical solution.7 The details of this analysis and the
numerical solutions are provided in Appendix A. An excellent
agreement for the strain energies has been obtained validating
the applicability of the finite element method for computing
the strain energy of the disclination defect in the decahedral

nanoparticle systems. We note that the convergence of the finite
element analysis to the correct analytical result for a circular two-
dimensional disclination is not trivial and hence is an important test.
The analysis of three-dimensional decahedral NPs consists of

building a decahedral shape with a wedge gap of angle ΩD.

Figure 6. (a,c) Von Mises stress concentration and (b,d) strain energy density profiles in decahedral nanoparticles with geometric parameters: (a,b)
β = 1, hr = 1, and (c,d) β = 0.5, hr = 1.5. Also shown at the top is the orientation of the Cartesian axes to help understand the views and sections in
(i,ii,iii,iv). Suppose this Cartesian system is located at the geometric center of the nanoparticle. The z-axis, which is parallel to the disclination axis in the
decahedral shape, is pointing out of the page. The y-axis is in the plane of one of the twin boundaries in the particle. In (i) and (ii), the nanoparticle is
viewed along the z-axis direction (i.e., along the disclination axis). The section showed in (ii) represents a cut along the center of the nanoparticle (i.e.,
along the plane z = 0). Shown in (iii) and (iv) is a side view of the nanoparticle along the x-axis and the cut in (iv) is made along the x = 0 plane. The stress
concentrators and regions of high strain energy density where defects are likely to nucleate are highlighted.
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Boundary conditions are then applied such that the two edges of
the wedge match and the wedge is closed. Since the rotational
displacement of the edges of the wedge is large, it is necessary to
consider the nonlinear terms in the strain tensor. This is termed
as the geometric nonlinearity41 associated with large rotational
displacements. The generalized Hooke’s law for anisotropic
solids42 is used for the stress−strain relationships in the
decahedral NPs. The effect of twin boundaries is modeled by
simply dividing the decahedral shaped particle in five equal
sections and assigning different crystal orientations to each
section such that the misorientation between individual units is
compatible with that of a {111} twin boundary. The elastic
anisotropy is automatically built in to the system when the
different sections (tetrahedral units) are assigned different
crystallographic orientations. The analysis is performed in two
steps. The first step consists of building the model and applying
the boundary conditions such that the wedge gap is closed. In the
second step, the boundary conditions closing the wedge are
deactivated and a tie constraint (see ABAQUS38 Analysis User’s
Manual, Section 31 “Constraints”, subsection 3.1 “Mesh tie
constraint’” for further details) is applied to the two edges of the
wedge to simulate bonding in the system. During this step the
system is equilibrated with the tie constraint.

■ RESULTS AND DISCUSSION
Per-Volume Disclination Strain EnergyWV

D(β, hr). These
two steps have been implemented in ABAQUS for different
decahedral-shaped particles and their strain energies computed.
There are three geometric parameters that are of interest as
shown in Figure 1. The length a of the tetrahedral unit is a
measure of the lateral extent of the particle. The aspect ratio hr is
defined as the ratio of the length of the particle along the
disclination axis and the length a. The grooving factor β is defined
as the ratio of the lengths of the tetrahedral unit after and before
grooving such that β = 1 corresponds to the decahedral shape
with no re-entrant grooving (Figure 1b) and β = 0 represents a
star-shaped pentatwinned structure (Figure 1d). Also shown in
Figure 1a,e are the different crystallographic orientations of the
surfaces exposed in these particles. The only two crystallographic
facets that are considered (and usually observed) are the {111}
and {100} planes (with the {100} planes present only when the
parameters are such that hr > 1 and β≠ 0). Even though there are
three independent parameters, the per-volume strain energy is
only a function of aspect ratio hr and grooving factor β and is
denoted as WV

D(β,hr). Any change in the length a simply scales
the dimensions of the particle while the geometry remains
unchanged. The strain energy per unit volume, WV

D(β,hr), has
been computed for different values of β ∈ [0,1] and hr ∈ [1,25]
for gold and silver (the relevant constants are listed in Appendix
B) and shown in Figure 2.
The variation of WV

D with respect to aspect ratio (hr) for a
constant grooving factor (β) is nontrivial. There is a common
misconception concerning the strain energy density surrounding
a disclination defect. Since the strain energy per unit length of an
infinite cylinder with a disclination defect is proportional to the
square of the radius of the cylinder,7 it is assumed that adding
new material laterally results in a higher increase in the total
strain energy (as the radius is increased) as opposed to adding
new material along the disclination axis. However, we are
concerned with a constant volume problem. Suppose a cylinder
of length l and radius R and assume the strain energy density
same as that of the infinite cylinder. This would result in the
strain energy of WD ∝ R2l due to the disclination defect. The

quantity WV
D is constant if the volume remains constant and

redistributing the material laterally (increasing the radius and
decreasing the length) or along the disclination axis (increasing
the length and decreasing the radius) will not change WV

D. For
decahedral NPs, the geometry is complicated by decahedral caps
and re-entrant grooving. The distribution of strain energy density
is further modified by the presence of twin boundaries.
Therefore, a nontrivial variation of WV

D(β,hr) is observed
especially at low values of hr. WV

D(β,hr) initially decreases and
then increases to plateau at a certain value (denoted here as

Figure 7. Internal rigid-body rotations along the disclination axis as a
function of the angular position. In (a) the geometry of the decahedral
rod (β = 1 and hr = 5) used to compute the rotation tensor along with the
plane perpendicular to the disclination axis across which the rota-
tions are plotted is shown. The distribution of the component
ωz = (1/2)(∂ux/∂y − ∂uy/∂x) of the rotation tensor converted to
degrees is plotted in (b). In (c),ωz is plotted along the blue line shown in
the inset and the total internal rotation sums up to ΩD ≈ 7.36°.

Figure 8. Two-dimensional disk model in finite element analysis
software ABAQUS with a wedge disclination angle ΩD ≈ 7.36° with (a)
appropriate meshing and (b) boundary conditions closing the wedge
gap. Shown in (c) is the second step in the analysis where the tie
constraint is applied to the edges of the wedge and the boundary
conditions are removed and the system is equilibrated.
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WV
D(β,∞)), which may be greater or lesser than WV

D(β,0)
depending on the grooving factor β. The variation of the per-
volume strain energy with an increase in re-entrant grooving
(a decrease in β) is such that WV

D initially increases with initial
grooving, reaches a maximum around β≈ 0.7 and then decreases
with further increase in grooving. The minimal strain energy is
obtained for star-shaped decahedral nanoparticle (β = 0) with
aspect ratio hr ≈ 1.2.
Lowest Energy Shapes for decahedral NPs. The

thermodynamically most stable decahedral shapes, for any size,
may now be obtained by computing the free energy of different
shapes using eq 1 and minimizing the energy under the con-
straint of constant volume. In eq 1, WV

D is obtained using finite
element analysis as described above. The surface free energy
parameters (γ{111} and γ{100}) and the twin boundary energy (γt)
from Howie−Marks23 (denoted as HM in the rest of the article)
are used in these calculations and are tabulated in Appendix B. As
developed by HM, the surface strain energy is assumed to be
proportional to the surface energy such that WSi = ges̅γi, where
es̅ = ΩD/2 and g is a constant approximating the surface stress
tensor. [The values of g used, to match the computations of HM,
are 0.88 and 1 for gold and silver, respectively.] The effect of the
strain energy due to lattice compression is negligible23 compared
to the other terms and is not considered for this analysis. The
minimization is done numerically and the shape of the faceted
decahedral nanoparticle is determined through the optimal
geometric parameters β and hr.
Shown in Figure 3 are the optimal geometric parameters for

the decahedral NPs plotted as a function of the ratio req/γ{111}. req,
called the equivalent radius, is a measure of the size of the
nanoparticle and is defined as (3V/4π)1/3, where V is the volume
of the nanoparticle. γ{111} is the surface energy of the {111}
crystallographic facet. The optimal parameters β and hr vary with
the size of the decahedral nanoparticle. At very low sizes, the
contribution of WV

D is negligible compared to surface terms and
the shape is close to the modified Wulff shape formulated by
Marks28 and the geometry is such that β = (1 − (γ{100}/
(√3γ{100})))hr. As the size increases, the contribution of the
volume-dependent strain energy starts to dominate and the opti-
mal parameters shift toward the minimum in theWV

D(β,hr) plot;
i.e., the volumetric strain energy drives the system toward star-
shaped particles with very low aspect ratios. These results indicate
that the growth of elongated decahedral rods is completely a kinetic
effect.
It is reasonable to expect the optimal geometric parameters

to vary with the surface energies. By systematically varying the

surface energies γ{111} and γ{100} (e.g., by changing the con-
centration of surfactants), it is possible to control the shapes of
the most stable decahedral nanoparticles. Shown in Figure 4 are
the optimal geometric parameters as a function of the ratio of
surface energies (γ{111}/γ{100}) and the parameter (req/γ{111}).
Although strain energy has an influence on the least energy
shapes, as observed in Figures 3 and 4, the effect is weak since the
change in shape from the modified Wulff shape (especially in the
size range ≤10 nm) is small.

Transition Radii. The computed strain energies also have
implications for the transition radii from the pentatwinned
structure to the single-crystal Wulff shape. Since the model for
surface energies and surface strain energy is adopted from HM, a
comparison to the transition radii predicted for gold and silver is
made in Table 1 with the transition radii obtained inHM. InHM,
the elastic strain energy due to the disclination defect is evaluated
using isotropic elastic constants. The strain energy of the thermo-
dynamic shape computed using ABAQUS varies with size and is
about 75% of the HM’s prediction (as shown in Figure 5). The
new estimate for the strain energy resulted in ∼50% increase in
the transitions size radius (see Table 1). This increase in the
transition size, although in the right direction, is a large effect.
However, this increase is predictable since the strain energy com-
puted in HM using variational methods is an upperbound and is
necessarily an overestimate.

Insights from Finite Element Analysis. As the size of the
decahedral NPs increases, it is more likely to find crystal lattice
defects such as dislocations, stacking faults, etc., in these particles.
These lattice defects result in the relaxation of the bulk strain
energy (due to the disclination defect) and extend the stability
regime of the decahedral motifs. In fact, the re-entrant grooving
along the twin boundaries has been proposed to be a mechanism
for stress relaxation.22,30,43 The plots of the per-volume strain
energyWV

D shown in Figure 2 provide evidence for this mechanism.
Results from the FE analysis also comprise stress and strain
energy density (SED) as a function of position in the decahedral

Table 2. Elastic Constants and the Surface Energy Parameters
Used for the Thermodynamic Analysis of the Decahedral-
Shaped Nanoparticles of Gold and Silvera

material elastic const (GPa) γ{111}(J/m
2) γt(J/m

2)

gold C11 = 192.9; C12 = 163.8; C44 = 41.5 2.26 0.0175
silver C11 = 124; C12 = 93.4; C44 = 46.1 1.9 0.01

aThe elastic constants are from ref 42 and the surface energy
parameters are obtained from HM23 with γ{100} = 2γ{111}/√3.

Figure 9. (a) Plots of the analytical deWit solution for the disclination strain energy per unit length for an isotropic infinitely long cylinder and the strain
energy computed in ABAQUS for a two-dimensional disk with plane strain condition. Shown in (b) is the error in the energy between the analytical and
computed strain energies.
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nanoparticles. These profiles are utilized to identify regions
of high stress (and SED) concentration and to correlate with
experimentally observed defect configurations in decahedral
NPs. Commonly observed defects in small decahedral NPs are
the “wedge-shaped” defect consisting of twinned layers within
the individual tetrahedral units and dislocations localized near
twin boundaries.30

Shown in Figure 6 are the VonMises stress44 and SED profiles
in two different decahedral-shaped particles. The presence of
high stress and SED concentration in the tetrahedral unit (at the
center of the outer edge) for β = 1NPs (Figure 6a,b) provides the
necessary driving force for the nucleation of twinned layers,
which are commonly observed in these structures. Similarly, high
stress concentrations are found close to the twin boundaries for
β≥ 0.5 (Figure 6c,d) shapes, resulting in stacking fault formation
close to the twin boundaries in decahedral NPs with re-entrant
grooving.
Another important quantity with relevance to high-resolution

electron microscopy (HREM) is the internal rigid-body rotation
of the decahedral nanoparticle. The rigid-body rotation has been
computed by analyzing the high-resolution electron microscopy

(HREM) image with geometric phase analysis.45 In Figure 7, the
internal rotation (equal to the component ωz = (1/2)(∂ux/∂y −
∂uy/∂x) of the rotation tensor ω = (1/2)(∇u⃗ − (∇u ⃗)T)) is
plotted in degrees as a function of angular position in the
decahedral particle. As observed in Johnson et al.,45 the internal
rigid-body rotation exhibits discontinuities (of magnitude ∼0.25°)
across the twin boundaries. However, contrary to the observation
in Johnson et al., the internal rotation sums up toΩD ≈ 7.36°, (the
solid angle deficit in the disclination model of the decahedral
nanoparticle). We note that a smaller number implies some defect
relaxation mechanism. The presence of discontinuities in the
internal rotation at the twin boundaries, which may be attributed to
the anisotropic nature of the elastic constants, requires further
analysis. Also relevant for HREM is the bending of the decahedral
particles parallel to the disclination axis. The bending in these
particles is investigated using the components ωx and ωy of the
rotation tensor along the plane sections parallel to the disclination
axis. These components are calculated and presented in Appendix
C. We observe that these rotation components are negligible in
the particle except at the surface of the decahedral caps implying
negligible bending of the particle due to the disclination defect.

Figure 10.Geometry of the decahedral particle, shown in two different views in (a) and (b). The geometrical parameters are β = 0.5 and hr = 1.5, which is
themodified-Wulff shape when γ111/γ100 =√3/2. The red dashed lines represent the plane section, in the decahedral particle, that is perpendicular to the
global x-axis and along which the distributions of the rotation tensor componentsωx andωy are plotted in (c) and (d), respectively. The magnitudes (in
degrees) of the rotation components are very small and the extreme values are only observed close to the surface of the decahedral caps, implying
negligible bending in the particle.
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■ CONCLUSIONS

Metallic nanoparticles (NPs) and their assemblies have been
utilized in a variety of applications, such as in catalysis, plasmonics,
nanoelectronics, biomolecular analysis, and sensing. Since there is a
strong correlation between size, shape (morphology), and struc-
ture (heterogeneities, defects, etc.) of NPs and their properties,
the emphasis during synthesis is on the precise control of these
structural aspects. In particular, decahedral NPs offer unique
possibilities due to their nonconvex shapes and the presence
of inherent strain that could be exploited to control shape and
structure.

Although numerous approaches for the synthesis of metallic
NPs with a precise control over shape and morphology exist,
there is a lack of a complete theoretical basis to help understand
the stability and growth kinetics of the decahedral nanostructures.
The first step in this direction is to obtain accurate estimates of all
the energetic contributions, and in the case of decahedral NPs the
strain energy due to the disclination defect is an essential aspect in
the thermodynamic equations governing their stability. In order to
model the strain energy accurately, the effects of elastic anisotropy,
twin boundaries, and the shape of the particle need to be considered.
Finite element analysis (FEA) is especially suitable to perform these

Figure 11.Geometry of the decahedral rod, shown in two different views in (a) and (b). The geometrical parameters are β = 1 and hr = 5. The red dashed
lines represent the plane section, in the decahedral particle, that is perpendicular to the global x-axis and along which the distributions of the rotation
tensor components ωx and ωy are plotted in (c) and (d), respectively. The magnitudes (in degrees) of the rotation components are very small and the
extreme values are only observed close to the surface of the decahedral caps, implying negligible bending in the particle.
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computations because of the ease with which the anisotropy and
nonlinearities can be incorporated and the capability of investigating
different geometries. FEA is implemented in ABAQUS to compute
the strain energy of decahedral shapes for different geometries by
varying two parameters: grooving factor (β) and aspect ratio (hr).
The variation of per-volume strain energy due to the dis-

clination defect (WV
D) as a function of the geometric parameters β

and hr is shown to be nontrivial (Figure 2). For a constant β,
WV

D(β,hr≥10) can be greater or lesser thanWV
D(β,0). Contrary to

conventional wisdom suggesting relief of elastic strain energy due
to axial growth (i.e., growth along the disclination axis resulting in
long decahedral rods), for β = 1 the strain energy for long rods is
larger than those with very low aspect ratio. This result suggests
that the growth of long decahedral rods from solutions should be
completely a kinetic effect resulting in nonequilibrium shapes.
The effect of re-entrant grooving is such that a decrease in strain
energy is obtained only after substantial grooving (β ≤ 0.5).
The most stable shapes for the decahedral nanoparticles depend

on their size. At very low sizes, the role played by volumetric strain
energy is insignificant and the geometry is given by the modified-
Wulff shape (β = (1 − (γ{100}/(√3γ{111})))hr). As the size
increases, the contribution of the strain energy starts to dominate
and the shape is driven toward the global minima in theWV

D(β,hr)
plot (β = 1, hr ∼ 1.2). To compare the effect of the newly
obtained strain energy on the stability regime of the decahedral
NPs, a comparison to the estimates obtained in HM is made.
About 25% decrease in strain energy as compared to HM’s
solution results in about a 50% increase in the stability regime.
FEA also provides with the stress and strain tensors and the
elastic energy density at any location in the decahedral shape.
These results show that the distributions of stress and strain
energy density are not homogeneous and the regions of high
stress concentrations are highlighted in Figure 6. Structural defects
such as stacking faults and dislocations have been observed to have
nucleated in these regions to relieve elastic strain energy.

■ APPENDIX A

Finite Element Analysis of the Disclination Defect in a
Two-Dimensional Disk
The finite element method is used to first evaluate strain energies
per unit length of a disclination defect in an infinitely long
cylinder (simulated using a two-dimensional disk with the plane-
strain condition) and compared with the strain energy per unit
length evaluated analytically7 (shown in eq 2) for an infinitely
long isotropic cylinder.

π ν
= Ω

−
E

G R
16 (1 )

2 2

(2)

Here Ω is the angle of the disclination defect, ν is the Poisson’s
ratio, andG is the shear modulus. The elastic energy is computed
using finite element simulation in ABAQUS. A two-dimensional
disk model was first built with a wedge gap of angle 2π − 5
arccos(1/3) (the angle of a disclination defect in a pentatwinned
nanoparticle) as shown in Figure 8a. There are two steps
involved in the simulation (as mentioned in the section Finite
Element Analysis). In the first step, the wedge gap is closed by
applying boundary conditions (Figure 8b) on the edges of the
wedge such that the edges overlap. In the second step, a tie
constraint is applied (to simulate bonding as shown in Figure 8c),
the boundary conditions are removed, and the system is equil-
ibrated. Since the strain energy varies as radius squared, strain
energies for two-dimensional disks of varying radius have been

computed and plotted again the analytical solution in Figure 9a.
The calculated and analytical solutions agree well as can be
observed from the plot of relative energy differences in Figure 9b.

■ APPENDIX B

Parameters
The relevant constants and surface energy parameters used for
the thermodynamic analysis are listed in Table 2.

■ APPENDIX C

Column Bending in Decahedral Nanoparticles
An important issue in high-resolution electron microscopy
(HREM) of decahedral nanoparticles is concerned with the
bending of atomic columns parallel to the decahedral axis. We
present here some preliminary results concerning bending that
may arise due to the presence of disclination defect using finite
element analysis. It is important to note here that we do not
consider the effect of surface stresses, which may be important at
the size ranges relevant to HREM characterization.
To obtain a complete picture of rotations in decahedral-

shaped particles, the infinitesimal rotation tensorω is computed.
ω is expressed in terms of gradients of the displacement vector
(u ⃗) as

ω

ω ω

ω ω

ω ω
= ∇ ⃗ − ∇ ⃗ =

−

−

−

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
u u

1
2

( ( ) )

0

0

0

T

z y

z x

y x (3)

The rotation components relevant to bending in the decahedral
particles areωx andωy. These components (in degrees) are plotted
in a plane (perpendicular to the x-axis) of the decahedral particles
for two different geometries in Figure 10 (β = 0.5 and hr = 1.5) and
Figure 11 (β = 1 and hr = 5). As can be observed from the
magnitudes of ωx and ωy, the rotations resulting in the bending
of atomic columns are negligible (except at the surfaces of the
decahedral caps) and should be difficult to observe experimentally.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: m-olvera@northwestern.edu.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank the NSF MRSEC for support under award no. DMR-
1121262, and NERC, an EFRC funded by the DOE Office of
Science, under award no. DE-SC0000989. We also thank
Dr. Dhiraj Catoor and the anonymous reviewer for insightful
discussions and valuable suggestions to improve the quality of
the paper.

■ REFERENCES
(1) Liu, M.; Guyot-Sionnest, P. J. Phys. Chem. B 2005, 109, 22192−
22200.
(2) Pietrobon, B.; McEachran, M.; Kitaev, V. ACS Nano 2008, 3, 21−
26.
(3) Pastoriza Santos, I.; Sanchez Iglesias, A.; Garcia de Abajo, F.; Liz-
Marzan, L. Adv. Funct. Mater. 2007, 17, 1443−1450.
(4) Pietrobon, B.; Kitaev, V. Chem. Mater. 2008, 20, 5186−5190.
(5) Walsh, M.; Yoshida, K.; Kuwabara, A.; Pay, M.; Gai, P.; Boyes, E.
Nano Lett. 2012, 12, 2027−2031.

The Journal of Physical Chemistry C Article

dx.doi.org/10.1021/jp310045g | J. Phys. Chem. C 2013, 117, 1485−14941493

mailto:m-olvera@northwestern.edu


(6) de Graaf, J.; van Roij, R.; Dijkstra, M. Phys. Rev. Lett. 2011, 107,
155501.
(7) DeWit, R. J. Phys. C: Solid State Phys. 1972, 5, 529.
(8) Gates, B. Chem. Rev. 1995, 95, 511−522.
(9) Narayanan, R.; El-Sayed, M. Nano Lett. 2004, 4, 1343−1348.
(10) Cuenya, B. Thin Solid Films 2010, 518, 3127−3150.
(11) Kelly, K.; Coronado, E.; Zhao, L.; Schatz, G. J. Phys. Chem. B 2003,
107, 668−677.
(12) Scher, E.; Manna, L.; Alivisatos, A. Philos. Trans. R. Soc. London,
Ser. A: Math., Phys. Eng. Sci. 2003, 361, 241−257.
(13) Gonzalez, A.; Noguez, C. J. Comput. Theor. Nanosci. 2007, 4, 231−
238.
(14) Noguez, C. J. Phys. Chem. C 2007, 111, 3806−3819.
(15) Chen, L.; Rajh, T.; Jager, W.; Nedeljkovic, J.; Thurnauer, M. J.
Synchrotron Radiat. 1999, 6, 445−447.
(16) Rajh, T.; Nedeljkovic, J.; Chen, L.; Poluektov, O.; Thurnauer, M.
J. Phys. Chem. B 1999, 103, 3515−3519.
(17) Johnson, C.; Dujardin, E.; Davis, S.; Murphy, C.; Mann, S. J.
Mater. Chem. 2002, 12, 1765−1770.
(18) Sun, Y.; Mayers, B.; Herricks, T.; Xia, Y.Nano Lett. 2003, 3, 955−
960.
(19) Lofton, C.; Sigmund, W. Adv. Funct. Mater. 2005, 15, 1197−1208.
(20) Chen, Y.; Gu, X.; Nie, C.; Jiang, Z.; Xie, Z.; Lin, C. Chem.
Commun. 2005, 4181−4183.
(21) Sanchez-Iglesias, A.; Pastoriza-Santos, I.; Perez-Juste, J.;
Rodriguez-Gonzalez, B.; Garcia de Abajo, F.; Liz-Marzan, L. Adv.
Mater. 2006, 18, 2529−2534.
(22) Zhang, W.; Liu, Y.; Cao, R.; Li, Z.; Zhang, Y.; Tang, Y.; Fan, K. J.
Am. Chem. Soc. 2008, 130, 15581−15588.
(23) Howie, A.; Marks, L. Philos. Mag. A 1984, 49, 95−109.
(24) Cleveland, C.; Landman, U. J. Chem. Phys. 1991, 94, 7376.
(25) Yacaman, M.; Ascencio, J.; Liu, H.; Gardea-Torresdey, J. J. Vac.
Sci. Technol. B: Microelectron. Nanometer Struct. 2001, 19, 1091.
(26) Elechiguerra, J.; Reyes-Gasga, J.; Yacaman, M. J. Mater. Chem.
2006, 16, 3906−3919.
(27) Hofmeister, H. Z. Kristallogr. 2009, 224, 528−538.
(28) Marks, L. Philos. Mag. A 1984, 49, 81−93.
(29) Ringe, E.; Van Duyne, R.; Marks, L. Nano Lett. 2011, 11, 3399−
3403.
(30) Gryaznov, V.; Heydenreich, J.; Kaprelov, A.; Nepijko, S.;
Romanov, A.; Urban, J. Crystal Res. Technol. 1999, 34, 1091−1119.
(31) Ino, S. J. Phys. Soc. Jpn. 1966, 21, 346−362.
(32) Ino, S. J. Phys. Soc. Jpn. 1969, 27, 941−953.
(33) Marks, L. Surf. Sci. 1985, 150, 302−318.
(34) Dundurs, J.; Marks, L.; Ajayan, P. Philos. Mag. A 1988, 57, 605−
620.
(35) Allpress, J.; Sanders, J. Aust. J. Phys. 1970, 23, 23.
(36) Cleveland, C.; Landman, U.; Schaaff, T.; Shafigullin, M.;
Stephens, P.; Whetten, R. Phys. Rev. Lett. 1997, 79, 1873−1876.
(37) Halicioglu, T.; Bauschlicher, C., Jr Rep. Prog. Phys. 1999, 51, 883.
(38) ABAQUS. ABAQUS/Standard Version 6.10-1; Dassault Systeḿes
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