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ABSTRACT: Experimental results for corner rounding in
nanoparticles as a function of size are reported. We find that
the rounding is independent of size, which appears to violate
the conditions for both the thermodynamic and kinetic Wulff
conditions. To understand this, we first verify that continuum
concepts such as the weighted mean curvature and preferential
nucleation at a twin boundary are valid at the nanoscale using
density functional theory calculations. We then explain the
rounding as a consequence of a nominal singularity in con-
tinuum models for sharp corners, showing that rounded or in
some cases slightly truncated corners are a Lyapunov (steady-
state) solution. We point out that in almost all cases the
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corners of materials at the nanoscale will be rounded, and also that the rounding can be exploited to measure the chemical

potential during the growth conditions.

B INTRODUCTION

With the recent increase in interest in materials at the nano-
scale there has been extensive development in methods for both
synthesizing materials with nanometer precision as well as imaging
them with picometer accuracy. In most cases the classic models
for understanding the structure of these materials which date
back to the 19th century have held up very well. For instance, the
Waulff construction for the thermodynamic shape of an isolated
particle' ~ has been shown to apply for sizes from nanometers
to millimeters, and can be modified to include substrates® and
twins,”® and the kinetic version of this for both single crystals’'®
and twins'®'” has been shown to hold for many cases where growth
dominated. Both of these approaches have, in many cases, sharp
corners and edges. For many applications such as plasmonics'® one
wants to have very sha? corners, and even very small rounding
can have large effects.'”* As a second example in catalysis a very
successful model for rationalizing many particle size effects is
consideration of how many edge and corner atoms there are as a
function of size, since these can have higher activity.”'

A subtle question that appears to have largely escaped
attention for nanoparticles is whether the corners and edges are
really sharp. In fact, there is an important reason to raise this
question. Within a continuum model the chemical potential of a
sharp corner can be understood in terms of the weighted mean
curvature (wmc),>” a limit that is similar to a functional derivative
of the total surface energy Es with respect to h; the normal dis-
tance to the facet,

wmcin;) = um =
Y 60 AV(h; + h,) Q, (1)

where p°(h;) is the chemical potential associated with a given
facet i as a function of h; and € is the atomic volume. For a
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simple corner, as illustrated in Figure 1, the chemical potential at
the apex scales can be written as

A
L —h ()

wmc(h,) =

with L, the distance from the Wulff center to the apex as shown
in Figure 1, and the facet disappears for h; > L; with a weighted
mean surface energy 7. The wmc is nominally singular for a sharp
corner. Is this an artifact of a continuum model, or are sharp

]0

Wulff Center

Figure 1. Illustration of truncation of a (001) facet for different numbers
of planes () to take account of atomicity, with the Gibbs equimolar
surface shown. Here L, is the distance normal to the facet from the Wulff
center to the apex, while ; would be the distance from the Wulff center
to the facet shown here for N = 2.
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corners not present in many cases? There is a substantial litera-
ture where at larger scales these singularities are handled by a
regularization via a curvature term (e.g, refs 23—31 and ref-
erences therein), but whether this is valid at the atomic scale for a
nanoparticle is not obvious.

In this note we provide experimental evidence and a theo-
retical analysis to demonstrate that in many cases corners and
edges are not sharp at the nanoscale. Electron microscopy data
for gold nanoparticles from a conventional polyol synthesis show
that their corners are rounded, with a radius of curvature that
is largely independent of size. To understand this, we first
demonstrate via density functional theory calculations that the
singularity of the chemical potential in a continuum model is
nominally valid, provided that atomicity is taken into account and
the units are carefully chosen to include the Gibbs equimolar
partition.”””” The intent is to show that continuum models for
chemical potentials in nanoparticles and atomistic ones agree.
We next show that there will be a steady-state, Lyapunov stable
solution with finite, size-independent truncation of sharp
corners. Finally, we provide an inductive proof that the stable
shape will tend toward a rounded corner, without invoking any
curvature regularization. This analysis does not disprove the
conventional kinetic-Wulff solution; rather it indicates that it has
to be modified at the nanoscale. While exceptions are always
possible, both the experimental data and theoretical analysis
indicate that most corners and edges are not sharp.

B EXPERIMENTAL AND THEORETICAL METHODS

Synthesis of anisotropic Au nanoparticles with different shapes
was performed via a modification of a one-pot polyol synthesis,”*
using different concentrations of polyvinyl pyrolidone (PVP) to
yield different size particles For larger particles (65—120 nm),2 g
of polyvinyl pyrolidone (PVP, (CsHoNO),; MW = 55 000 g/mol)
was dissolved in 25 mL of diethylene glycol (C,H,(,O5). To make
smaller nanoparticles, the PVP concentration was altered. All of
the solutions were refluxed at 255 °C for 10 min. An amount of
20 mg of HAuCl,-3(H,0) salt dissolved in 2 mL of diethylene
glycol was then added rapidly, and the mixture was allowed
to reflux for 10 more minutes. Reaction was stopped using a cold
water bath, and the particles were washed with anhydrous
ethanol (C,H;OH, EtOH) repeatedly. Particles were spun down
via centrifugation at 6000 rpm for 30 min. Supernatant was
removed, and more EtOH was added to replace the adsorbed
diethylene glycol/PVP in the system. Removal of DEG was
confirmed through UV—vis spectroscopy.

The morphology of the samples was characterized via conven-
tional transmission electron microscopy in a JEOL2100F. Edge
length and corner rounding of the particles were measured using
Digital Micrograph and Image] software. The number of each
different shape was counted manually using at least 100 nano-
particles per sample or until the data were statistically significant.

Density functional calculations to analyze the weighted
mean curvature were performed using the all-electron APW+lo
WIEN2K code™ for a simple gold pyramid with P4/mmm sym-
metry as a function of truncation as shown in Figure 1, using the
Wu and Cohen generalized gradient approximation functional.*
Technical parameters were a maximum wavevector divided by
the smallest muffin-tin radius (RKMAX) of 8.0, muffin-tin radii
of 2.5 au sampled on a logarithmic mesh of 981 points, and a
special k-point of (1/6, 1/3, 1/4). The cell size was 23.1691 A X
23.1691 A x 45.0533 A. Additional reference calculations with
the same parameters except for the Brillouin-zone sampling were
calculated for a P4/mmm 21-layer Au(001) 1 X 1 periodic slab

surface (unreconstructed) with a 2.89614 A X 2.89614 A x
57.34064 A unit cell and bulk gold, with 10 X 10X 2 and 10 X 10X 10
k-point sampling. All calculations where converged to approx-
imately 2mRyd/au forces and used the DFT minimized lattice
parameters for bulk gold.

While these calculations were reasonably accurate, because of
the large cell size, they are not perfect but adequate to demon-
strate that the classical chemical potential of a facet via a
weighted-mean curvature approach is consistent with atomistic
calculations to 5% or better as discussed later.

B RESULTS

We focus here upon the decahedral multiply twinned nano-
particles (Dh) and truncated bitetrahedra (BTd) with a twin
plane (or more than one) normal to the viewing direction;
several examples of these are shown in the images in Figure 2.
Note that in both cases there is a twin boundary at the corner,
with the vector normal to the boundary perpendicular to the
viewing direction for the Dh and parallel for the BTd. Depending
upon how much PVP was present, the particle sizes changed,
being smaller for higher concentrations. Figure 3a shows results
for the corner-rounding as a function of edge length for 2 g of
PVP (MW = 55000 g/mol) for both the Dh and BTd, and
Figure 3b for the Dh over a wider size range using three different
concentrations as shown in the figure. While there is a slight
change at the smaller sizes and more scatter in the data at larger
sizes, over the total range the rounding is very close to constant.

We will now build up the explanation of the experimental
results primarily via a continuum model, which will be a sequence
of steps. For each, we will point out how the continuum model
corresponds to atomistic modeling results which already exist in
the literature or are described here. This enables us to demon-
strate that the continuum model is general.

As mentioned above, the corners of the Dh and BTd are both
at twin boundaries viewed from two orthogonal directions. The
thermodynamic minimum energy shape at a twin has a re-entrant
surface,”® and the overall shape is concave. However, there is
faster growth at the twin boundary due to faster nucleation of
an atomic layer, as known for some time in the literature (e.g,,
refs 37—41). A specific formulation of the rate was given recently
by Gamalski et al,*' who assumed nucleation on both sides
of the twin which leads for the shapes here to a kinetic-Wulff
shape without the re-entrant feature.'®'” At least for gold the
mechanism appears to be slightly different, and a little clarifica-
tion is appropriate as a slight digression. As discussed in more
detail in the Supporting Information, DFT calculations indicate
that there is an effective zero excess energy associated with
nucleation bounded by the twin boundary, so nucleation and
faster growth will occur via a half circle monatomic terrace. The
reason the excess energy is almost zero is because the atoms in a
twin termination are able to bond to the atoms on the other side
of the twin in the surface underneath; see Figure S1d.

Having established the basics of the kinetic enhancement at a
twin boundary at the atomic scale and hence for the small scales
herein, we need to investigate whether the singularity at a corner
is an artifact of a continuum model or valid in atomistic calcula-
tions. It is well-known that atomicity can lead to terms not found
in continuum models; for instance, as early as the 1930s Stranski
and Kaichew™ (see also ref 2 and references therein) worried
about what happened when surface areas were too small to
accommodate vicinal facets. Beyond this, it is sometimes con-
sidered that continuum models are not valid for surface energies at
small sizes. The available evidence dating back to the important
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Figure 2. Transmission electron microscope images of different Dh (top) and BTd (bottom), with scale bars of S0 nm.

work of Cleveland and Landman™” indicates that they are valid so
long as the Gibbs equimolar volume is used to define surface areas.
While this suggests that the wmc approach to chemical potential
should be valid provided that atomicity is included, it does not
prove it. As shown in Figure 4, for a simple pyramidal test case the
expected inverse scaling is obeyed exceedingly well. We therefore
conclude that we can apply the continuum wmc formulation
without any concerns about its validity for small sizes.

With the relevant continuum terms verified, we leave the
atomistic formulation behind and turn to a continuum analysis,
avoiding a regularization approach, for the moment with only the
simple truncation of Figure 1. The nanoparticles in the polyol
synthesis are kinetic shapes, and the shape of a nanoparticle in
this limit is given by

h, = Av, (3)

which can also be written in more compact form as the set of
points Sg

S = {x: x-fi < Aw(#) for all unit vectors 7} (4)
where h; is the distance of facet “i” from the origin, v; is the growth
velocity of that face, and A is a constant with different values for dif-
ferent sized nanoparticles. For these growth conditions (in contrast
to others such as diffusion control) for a large facet the velocity is
controlled by the time taken to nucleate a single atomic height ledge
as mentioned above which depends upon the chemical potential of
the external medium and that of the flat surface, plus the time for this
to grow to cover the facet by atom attachment at the step.

This equation has two well-known steady state solutions for
a given facet. One is when all the facet is part of the inner
envelope; i.e,, it grows slowly and is present in the nanoparticle.
The second is when the facet is outside the inner envelope; i.e., it

grows fast and is not present in the particle. There is a third
possibility when the facet size is comparable to that of a critical
single atomic height nucleus and in particular if the chemical
potential of the facet (via the wmc) is larger than that of the
surrounding solution. In such a case the single-layer nucleus
will never be stable. This third case leads to a steady-state solu-
tion where po = pt; = Qg7;/(L; — h;). This is a Lyapunov stable
solution, since if (L; — h;) increases because of growth rate
fluctuations, the growth velocity dh;/dt will increase, as there is a
larger driving force to add atoms to the facet. Similarly if (L; — h;)
decreases, the growth velocity will decrease and atoms would tend
to be etched back into the solution from the facet. Note that for the
steady state solution, (L; — ;) is independent of the particle size.

As the final step, we need to extend beyond the simple
truncation model with a flat facet. This answer is too simple for
two reasons:

(a) The kinetic-Wulff condition assumes that growth occurs
via nucleation of a small two-dimensional island followed
by step-flow growth across the facet, but if the surface is
rough with existing steps, there is no nucleation barrier.

(b) A flat facet also has corners, and one can apply the same
arguments to these, truncating them in turn ad infinitum.

By induction, since a flat facet violates the conditions, we should
consider a rough one where there is no nucleation barrier and no
corners. While we will not exclude slightly more complex local
shapes (a topic for future work), the simplest approximation is to
consider a sphere for truncation of corners of a cylinder for edges.
In this case the stable solution changes to ., = p; = CQ4yr/R
where R will be the radius of the corner, C depends upon the
angles for the corner, and yy, is the effective surface free energy of
the rounded corner. A representative calculation of C is given in
the Supporting Information for the case of a circular cone. This is
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Figure 3. (a) Measurements for 2 g of PVP of Dh and BTd. (b) Measurements for Dh in different concentrations of PVP.
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Figure 4. Plot of the chemical potential in eV/atom for a (001) facet
versus 1 over the truncation N.

consistent with the experimental results. We note that here the
radius R is also proportional to the homogeneous critical nuclea-
tion radius that would be used within a spherical model. (Note that
this is not the critical radius for the initial nucleation of the
nanoparticles; rather it is that for the growth conditions which will
normally be much larger.) By use of hy and R as vectors defined in
Figure S, this solution can be written in compact form as

Sk = {x: x-i < min(lhy + RI, Av(A)) for all unit vectors A} ~ (5)
with hy constrained to yield a continuous external surface.

As a final point of the analysis, we return to the scatter in
the experimental measurements of the corner curvature. The

Figure S. Plot of the conditions for a steady-state solution with rounded
(rough) corners.

solution given above is the Lyapunov-stable steady-state solution,
but in actual growth the shape will oscillate about this solution
only asymptotically converging to it. The scatter in the experi-
mental data is “real” and shows the magnitude of the deviations
from this solution during growth.

B DISCUSSION

All generalizations are dangerous, and in principle one can
conceive of special circumstances where it may be possible to
fabricate corners or edges that are truly sharp by using high
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chemical potentials. We believe that this will be the exception
rather than the rule. If one looks at experimental electron micro-
scope or scanning probe images of nanoparticles from solution,
evaporative growth or other means that are in the literature with
kinetic control of the shape all that we are aware of show rounded
corners and edges. We note that an obvious opportunity exists to
mine existing data to determine the chemical potential of the
solution by analyzing the rounding as a function of synthesis
condition. The scatter of the rounding can also be exploited to
look at the homogeneity of the growth conditions. For com-
pleteness we note that a similar result could be obtained by using
a more continuum based curvature regularization strategy as
cited earlier (e.g., refs 23—31 and references therein), but proving
that this is a valid approximation at the atomic level appropriate
for nanoparticles is not simple. Here we avoid this, as the corners
in effect self-regularize by dissolving back into the solution.

It is worth mentioning that in many cases the shape of a
nanoparticle in equilibrium with its vapor phase or some
concentration of atoms in a solution may also contain rounding
at the corners and edges by the same argument as we have used
here, or they may be sharp. Whether or not this occurs will be
strongly influenced by the rate of exchange with the external
medium, and it may take almost infinitely long for equilibrium
to be achieved. This would be an interesting topic for further
study, albeit it would be challenging experimentally to ensure
that equilibrium is achieved.

B CONCLUSION

The kinetic shapes of corners and edges will in most cases violate
the classical models and not be sharp but atomically rounded,
provided that atomicity is included. This does not invalidate
solutions such as the well-known Wulff construction in kinetic
or thermodynamic forms but instead requires a slightly more
complicated but still essentially classical analysis of the processes.
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