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ABSTRACT: The chemical and physical properties of nano-
particle surfaces have significant effects on their growth processes
and the resulting morphology. Hydrothermally grown KNbO;,
KTaO;, and KTa, ,Nb,O; were studied to examine the complex
relationships between surface composition, phase, chemistry, and
energetics and how these may be used to model and thereby
control nanoparticle growth mechanisms. Two different composi-
tion-dependent growth modes were identified, where one type
formed smooth surface facets, while the other resulted in
roughened nanoparticle morphologies. Electron microscopy
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characterization, density functional theory calculations, and mathematical growth models were used to illuminate the role of
surface properties and chemisorption on the nanoparticle growth morphology. Surface energy reduction by chemisorption can
increase the rate of terrace nucleation, driving the roughening of these lower energy nanoparticle surfaces.

B INTRODUCTION

The interest and use of nanoparticles in many different fields is
driven by their unique size-, shape-, and surface-dependent
properties. Many studies have focused on how to produce
nanoparticles as functions of synthetic conditions, such as with
hydrothermal methods," ™ as well as with size and shape
control to optimize their properties.*”® Predictable and
consistent control over nanoparticles, especially of their shapes,
is critical. This requires thermodynamic and kinetic growth
models that establish relationships between synthetic con-
ditions, growth mechanisms and regimes, and the resulting
material properties.

We previously demonstrated that the surface morphology of
hydrothermally grown KTaO; (KTO) nanoparticles depended
upon the rates of two competing processes, terrace nucleation
(Np), and terrace growth (Gy), which resulted in an evolving
surface morphology at the nanoscale during growth.” Terrace
nucleation is the process where growth terraces nucleate on
nanoparticle surfaces, and terrace growth is the lateral growth
of the existing growth terraces. Two different growth regimes
were defined; the terracing regime occurs when terrace
nucleation dominates and is characterized by the growth of
rough surfaces, while the smoothing regime occurs when
terrace growth rate dominates, resulting in flat nanoparticle
surfaces. Ny and Gy are affected by many variables, including
the overall driving force of the reaction, chemical potentials of
each component in the system, and temperature, and therefore,
it is important to understand these relationships so that these
variables may be tuned for specific shapes, as demonstrated on
LnScO; nanoparticles.'’
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On this note, we took a further step in understanding how
the growth conditions control the surface roughness via an
additional term—how chemisorption promotes the formation
of three-dimensional nuclei that lead to rough surfaces. The
systems of interest here were KTO and KNbO; (KNO), which
have many similarities. KTO is an incipient ferroelectric that
remains cubic to very low temperatures,'"'” a material of
interest as a dielectric material,'> tunable microwave element,'*
or photocatalyst.'”'® KNO is a ferroelectric material with
cubic, tetragonal, and orthorhombic phase transitions' '’
studied for electro-optic properties,””~>* device applications,”
and photocatalysis.""**® The solids can form a solid solution
KTa,_,Nb,O; (KTN), which has itself been studied for its
compositionally tunable dielectric, ferroelectric, and electro-
optic properties.”’ >

Although Ta and Nb are chemically very similar, several
significant differences in the morphology between Ta-rich and
Nb-rich surfaces were observed in hydrothermally synthesized
KTO, KNO, and KTN samples, which on average ranged
200—400 nm in size. We explored and identified the origin of
these differences here. The Nb-rich surfaces experienced
chemisorption-driven roughened growth, whereas Ta-rich
surfaces grew smooth, flat surfaces via step-flow growth.
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B METHODS

Hydrothermal synthesis was used to synthesize KNO, KTO,
and KTN nanoparticles. Following Kumada et al.'” to form
KNO nanoparticles, 0.0121 mol Nb,O; and 0.363 mol KOH
were added to a 45 mL Teflon-lined autoclave with 26 mL
deionized water and heated to 200 °C for 12 h. The KTO
nanoparticles were synthesized by following Goh et al,*
where 0.0025 mol Ta,0g and 25 mL 15 M KOH were heated
in an autoclave to 150 °C for 4 h. KTN nanoparticles were
formed using two methods to produce samples KTN-1 and
KTN-2. The KTN-1 sample was synthesized by modifying the
KTO synthesis; a 1:1 ratio of Ta,O4 and Nb,O; (0.0025 mol
total) and 25 mL 15 M KOH were heated in an autoclave to
200 °C for 12 h. KTN-2 nanoparticles were synthesized by first
dissolving 0.00125 mol Nb,O; in 8 mL of 4 M KOH by
heating them in a Teflon-lined autoclave at 200 °C for 16 h.
The resulting clear solution was combined with 0.00125 mol
Ta,O4 and 18 mL of 20 M KOH to form an overall 15 M
KOH solution, which was subsequently heated to 200 °C for
24 h in an autoclave. In all cases, after cooling to room
temperature, the products were washed and centrifuged with
deionized water several times before being dried overnight at
80 °C.

Powder X-ray diffraction (XRD) was performed on a Rigaku
Ultima diffractometer with a Cu Ko source operated at 40 kV
and 44 mA. Secondary electron (SE) imaging and energy
dispersive X-ray spectroscopy (EDS) were performed on a
Hitachi HD-2300 STEM operated at 200 kV, and high-
resolution transmission electron microscopy (HRTEM) was
performed using the Argonne chromatic aberration-corrected
TEM (ACAT) microscope, an FEI Titan with a CEOS C_/C;
image corrector at the Argonne National Laboratory. HRTEM
images were simulated with the MacTempasX software
package,”* which uses the multislice method® and nonlinear
imaging theory.*®

Density functional theory (DFT) calculations were
performed using the WIEN2k package, an all-electron
augmented plane wave + local orbitals package code.’”**
Energies of the constructed surface slabs were calculated with
the modified Perdew—Burke—Ernzerhof generalized gradient
approximation functional (PBEsol).”” To confirm that the
PBEsol functional was appropriate for calculating the energies
of these materials, the enthalpy of formation for niobium oxide
was calculated and compared to the literature (Supporting
Information). Atomic muffin tin radii (Ryy) were set to 1.79,
1.71, 1.25, and 0.5 bohr for Ta, Nb, O, and H, respectively.
The cutoff parameter (RyK,,,), which is the product between
the smallest Ry;r and the magnitude of the largest K-vector
(K,nae), Was set to 2.5 and 6.25 for structures with and without
hydrogen, respectively, to keep K., consistent between
calculations with different smallest Ryy.””*® The k-point
mesh density was also consistent between bulk and surface
calculations. For the P phase, a k-point mesh of 10 X 10 X 10
was used for the bulk and 2 X 6 X 1 for the surface. For B
phases, a k-point mesh of 7 X 6 X 7 was used for the bulk and
4 X 3 x 1 for the surface. Surface energy (E,,) was calculated
according to the equation

Egap = MyuEouk — "u,0EH,0
2 Area

surf —

(1)

where Eg,, is the total energy of the slab, Ey is the energy of
bulk M,O5 (M = Ta, Nb), 1, is the number of bulk unit cells,
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Ey is the energy of a single water molecule, ny o is the

number of water molecules, and Area is the area of the surface
slab. Ey o was calculated by isolating a single water molecule in

a 10 A cell to avoid interactions and performing the calculation
with 1 k-point. Surface energies were converged within 0.01 J/
m® against RyrK,., k-point mesh density, slab size, and
vacuum. (CIF files are provided in the Supporting
Information). Adsorption energy per water molecule (E,q,)

was calculated using the equation

Eet = Egry — n1,0En,0

wet

Eads =
M0 @)

where E is Egy, when nyo > 0, and Ey, is Egy when

ﬂHzo =0.

B RESULTS AND DISCUSSION

XRD characterization of the samples confirmed that the
hydrothermal syntheses produced the perovskite phases, as
shown in Figure 1. The KNO sample matched to both cubic
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Figure 1. Powder XRD patterns of the KNO, KTO, KTN-1, and
KTN-2 samples. The KNO sample was matched to both cubic and

orthorhombic KNO phases, while the KTO, KTN-1, and KTN-2
samples were matched to the cubic perovskite phases.

and orthorhombic KNO phases (PDF 04-014-0625 and 04-
015-8615), while the KTO sample matched the cubic KTO
(PDF 04-007-9567) phase. Both KTN-1 and KTN-2 matched
well to the cubic KTO and KNO phases.

The morphology and composition of the nanoparticles
proved to be more complicated than the crystallography. SE
images of all the samples are provided in Figure 2. The average
sizes of the KNO, KTO, KTN-1, and KTN-2 nanoparticles
were 400, 200, 350, and 300 nm, respectively. While the KTO
nanoparticles had sharp corners and smooth facets, the KNO
nanoparticles had rounded corners and significantly rougher
surface facets. The two KTN samples differed significantly
despite their similar XRD patterns. Figure 2 shows that the
KTN-1 surfaces resembled the rough KNO nanoparticle facets,
whereas the KTN-2 sample shared the smooth, flat facets of
the KTO nanoparticles.

EDS maps of the two KTN samples in the last column of
Figure 2 reveal the source of these differences; the two were
inhomogeneous in composition and showed composition

gradients between Nb (red) and Ta (blue) in opposite
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Figure 2. SE images (scale bars = 200 nm) of KNO, KTO, KTN-1, and KTN-2 nanoparticles with average sizes of 400, 200, 350, and 300 nm,
respectively. All four samples were cuboidal in shape. The KNO and KTN-1 nanoparticles had rough surface morphologies, while the KTO and
KTN-2 samples had smooth and flat surfaces. EDS maps of KTN-1 and KTN-2 samples showed different composition gradients between Nb (red)
and Ta (blue). The KTN-1 nanoparticles had a Ta-rich bulk and Nb-rich surface, whereas the KTN-2 nanoparticles had a Nb-rich bulk and Ta-rich

surface.

directions. KTN-1 had a Ta-rich bulk and Nb-rich surface,
while KTN-2 had a Nb-rich bulk and Ta-rich surface. [KTN-1
nanoparticles synthesized with different Ta,05/Nb,Oj; ratios
exhibited the same Ta-rich bulk and Nb-rich surface
composition (Figure S1), and an explanation for how the
synthesis methods led to compositional inhomogeneity in the
KTN nanoparticles is provided in the Supporting Informa-
tion.] Notably, the surface composition and morphology of
each KTN sample matched the composition and morphology
of the pure KNO and KTO samples—the Nb-rich surfaces
(KNO and KTN-1) were rough, and the Ta-rich surfaces
(KTO and KTN-2) were smooth.

As mentioned earlier, the growth mechanisms of KTO
nanoparticles have been discussed in a previous study.” In that
study, it was shown that the nanoparticles grew via step-flow
growth,”” and the evolution of their surface morphology during
growth depended upon a competition between the rates of two
different growth mechanisms: terrace nucleation and terrace
growth. These rates were controlled by the chemical potential
change of reaction, which was determined to be primarily
dependent on the concentration of tantalum oxide species in
solution and the surface B—Ta,Oy phase.*' Figure 3 shows
HRTEM profile images of the surfaces of KNO, KTO, and
KTN-1 with the multislice simulation of the B—Ta,O; phase
inset in the KTO image. The surface oxides in both KNO and
KTN-1 were clearly different in comparison to KTO.

To determine the surface phase, multislice image simulations
were used to interpret the contrast in Figure 3 and identify
potential phase matches; then, model surface slabs were
constructed for surface energy calculations using DFT.
Multislice HRTEM image simulations were used to determine
possible surface phases by matching the image contrast of the
surfaces shown in Figure 3. The KTO surface phase was
matched to the B—Ta,O; phase before;” hence, in addition to
the corresponding B—Nb,O phase,*" other potassium niobate,
niobium (V) oxide, and niobium (V) hydroxide phases were
simulated to match the Nb-rich surfaces. The phases that best
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Figure 3. (a) HRTEM surface profile images of KTO, KTN-1, and
KNO nanoparticles oriented on the [110] zone (scale bars = 2 nm).
Multislice simulations of B—Ta,O5 and P—Nb,Og surface phases are
inset into images. KTO figure reproduced with permission from Ly et
al.” Copyright 2018 American Chemical Society. Relaxed surface slabs
of (b) B—Ta,O; and (c) P—Nb,O; structures with surface
terminations corresponding to the yellow dotted line in (a). Red
atoms are oxygen; black atoms are hydrogen; blue octahedra are Ta
octahedra; purple octahedra are Nb octahedra; yellow and dark red
polyhedra are tetrahedra and S-fold coordinated polyhedra,
respectively.
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matched were P—Nb,O; and R—Nb,Og, which are two similar
medium temperature-stable Nb,O; phases.*~*

Then, the P and R—Nb,Oy surface energies were calculated
to determine the most stable surface phase. Model surface slabs
were constructed according to the zone axis that best matched
the HRTEM image contrast based on multislice simulations.
The surfaces were truncated along the exposed facets indicated
in Figure 3 by the dotted yellow lines, and Pauling’s rules
adapted for oxide surfaces were used.*”*” The best match and
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most stable surface phase was identified as P—=Nb,Og because
the R phase only relaxed into high energy, unreasonable
structures. Multislice simulations of P—Nb,Og are inset in
Figure 3 for both KNO and KTN-1. For completeness, surface
slabs of B—Ta,0; and the analogous B—Nb,Os, which did not
match the experimental observations, were also constructed
and relaxed for comparison.

These results provided information about the surface
structures and chemistry, but their energetics must be
compared to explain the difference in the growth behavior
and roughness. Because the nanoparticles were synthesized
under highly alkaline aqueous conditions and additional
surface adsorption characterization postsynthesis suggested
that water was chemisorbed on the surfaces of all samples
(Figure S2), chemisorbed water was also modeled on the
surface slabs with both dissociated and undissociated bonding
configurations. The lowest surface energies for both dry and
wet calculations on the P—Nb,O;, B—Nb,Os, and B—Ta,0;
surface slabs are provided in Table 1 as well as the adsorption

Table 1. Calculated Surface Energies for P—=Nb,O;, B—
Nb,O;, and B—Ta,0; Surface Phases under Dry and
Hydrated Conditions”

surface energy

(/m?)
surface phase dry wet adsorption energy (eV/molecule)
P—Nb,O4 0.98 0.49 =21
B—NbD,Oq 12 0.93 —0.92
B—Ta,0; 13 1.0 -12

“The adsorption energy per water molecule for the wet surface
conditions are included.

energies for water molecules on the surfaces. The dry P—
Nb,O; surface had a lower surface energy than the two B
phases. In all cases, the chemisorbed water reduced the surface
energies, but it was particularly favorable for the P—Nb,Oq
structure, where the surface energy decreased by about 0.5 J/
m?® compared to 0.3 J/m* on the other two structures.

The large effect water chemisorption had on the P—Nb,O4
surface energy explained why the Nb-rich surface exhibited
different growth behaviors in terms of competition between
terrace nucleation and terrace growth. In the previous study,”
the growth terrace was modeled as a 2D step, but a 3D model
more appropriate for rough surfaces will be used here. If the
nucleated terrace is modeled as a hemisphere, then the terrace
nucleation energy (AE) is

AE

2 3 2
—aR’Ap + 27R°E

3 [ surf (3)
where R is the radius of the nucleus, and Ay is the chemical
potential change of forming the nucleated material. The
nucleation activation energy at the critical nucleus size and
terrace nucleation rate are therefore

AE = 87TES\1rf3
- 2
3Au 4)
—AE
M=ty es] 2|
kyT (3)

where f is the frequency factor, kg is the Boltzmann constant,
and T is the temperature. A larger surface energy increases the

7991

terrace nucleation activation energy (eq 4), thereby decreasing
the rate of nucleation (eq S), while a smaller surface energy has
the opposite effect. The DFT calculations showed that the P—
Nb,Oj; surface phase had a lower surface energy than the Ta-
rich surface phase (B—Ta,0s), and this energy was further
reduced by water chemisorption. Therefore, the lower surface
energy increased the rate of terrace nucleation, resulting in the
observed rough surface morphology, mathematically demon-
strated in Figure 4.

a b 1.0
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1x107 £ 08 Smoothing
3 Regime
3 06
<
5x%10° 2
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Figure 4. (a) Terrace nucleation rate (yellow) and terrace
annihilation rate (blue) plotted as functions of surface energy and
chemical potential. (b) The terracing (yellow) and smoothing (blue)
growth regimes defined where the terrace nucleation rate or terrace
annihilation rate dominate, respectively, depending on the surface
energy of the nanoparticles and Ay of the system.

In order to directly compare the rates of terrace nucleation
and terrace growth, a process related to terrace growth can be
defined as terrace annihilation, which is when a terrace grows
to the edges of a facet and annihilates itself. The terrace
nucleation rate and terrace annihilation rate (Ay) are plotted as
functions of Ay and surface energy in Figure 4a. Two growth
regimes are defined in Figure 4b as the terracing regime, where
the terrace nucleation rate dominates over the annihilation
rate, and the smoothing regime is where the terrace
annihilation rate dominates instead. The surface energy and
Ap are competing factors in a nanoparticle growth environ-
ment that control which growth behavior the nanoparticles will
exhibit.

The results presented show how not only does the surface
phase and composition play a role in the growth of
nanoparticles but also how chemisorption and surface energy
can affect the growth morphology of nanoparticles. The role of
hydroxyl groups on the synthesis and properties of KNO and
KTO nanoparticles have been studied previously;'”*>***
however, the effect of hydroxyl groups on the surface has not
been as extensively explored. In this case, the chemisorption of
water had little effect on the Ta-rich surfaces but had a
significant role in decreasing the surface energy of the Nb-rich
surfaces. These surfaces are experimental examples of how
reduced surface energies can push the growth behavior of the
nanoparticles into the terracing regime, resulting in chem-
isorption-driven surface roughening.

B CONCLUSIONS

The combined results of HRTEM imaging, multislice
simulations, and DFT calculations explain why the Nb-rich
and Ta-rich surfaces were so different in morphology. We have
shown that the Nb-rich surfaces of KNO and KTN-1 were
terminated with a lower surface energy phase P—Nb,Oj rather
than the analogous B phase that terminates the KTO surface.
DFT calculations comparing the surface energies of the two
surface phases additionally demonstrated the surface stabiliza-

https://dx.doi.org/10.1021/acs.jpcc.9b12023
J. Phys. Chem. C 2020, 124, 7988—7993
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tion effect of water chemisorption on the P=Nb,O; terminated
surfaces. These effects and variables were considered through
mathematical models of the terrace nucleation growth process,
which demonstrated that lowering the surface energy decreases
the activation energy for terrace nucleation, therefore
increasing the rate of terrace nucleation and promoting the
growth of a rougher surface morphology, as observed on the
Nb-rich surfaces of the KNO and KTN-1 nanoparticles. These
results are a demonstration of how different surface properties,
including composition, phase, and chemistry, play significant
roles in the synthesis and growth of nanoparticles.
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