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A B S T R A C T   

Triboelectric and flexoelectric phenomena have seen significant recent interest for energy harvesting. However, 
the underlying science responsible for triboelectricity has yet to be completely understood, both the funda
mentals and an understanding of how the energy output depends upon the shape of the interacting surface. Here, 
we investigate the role of the contacting shapes (asperities) in triboelectricity. We demonstrate that their shape 
and size is very important, obtaining qualitative agreement with experimental results. Further, we discuss how 
the impact of the shape depends on material, geometric, gradient elasticity and electronic transport details. We 
provide scaling rules which can be exploited to better design energy harvesting devices based upon either 
triboelectricity or flexoelectricity.   

1. Introduction 

Triboelectricity, the charge transfer between two contacting or 
rubbing materials, is of interest in a wide range of scientific, engineer
ing, and everyday applications. In some, such as in the design of tribo
electric nanogenerators (TENGs) [1,2] large charge transfer is desirable. 
In others, less charge transfer is preferable, e.g., to prevent industrial 
accidents [3], pharmaceutical powder clumping [4–6], or excessive 
charging of space exploration vehicles [7]. Triboelectricity is also 
important in diverse scientific areas, from planetary formation [8] to the 
effect of shampoos on the static electricity of human hair [9]. Despite an 
increasing interest in triboelectric research, many details of the mech
anism and relevant materials and geometrical properties are still un
known [10–12]. 

Some aspects of triboelectricity are established, and there is an 
analogy to a capacitor and compensating charges [13,14]. If there is a 
potential difference between two materials due to the difference in their 
work functions (contact potential), this can be thought of as equivalent 
to the potential difference across a capacitor. The charge to compensate 
this will be that which cancels the electric field. It has been known for 
many decades [15] that if an insulating dielectric is in between the two 
materials, then this will lead to a polarization P, a bulk bound charge of 
− ∇⋅P and a bound surface charge of P⋅n̂, where n̂ is the surface normal 
[16]. The total charge is then the combination of the bound surface 
charge from the polarization and that from the potential. 

Previously, we have pointed out that triboelectricity occurs at con
tacting asperities, where electromechanical potentials large enough to 

drive charge transfer form due to asperity deformation [17,18]. A sig
nificant contribution is due to the flexoelectric effect, the polarization 
caused by strain gradients, which should be combined with the contact 
potential between the two materials. Flexoelectric theory dates back to 
the 1960s [19,20], and it has become an increasingly popular research 
topic as the small length scales of nanotechnology lead to inherently 
large gradients. The field grew especially after the seminal measure
ments by Ma and Cross [21], and flexoelectric contributions have been 
shown to be important for a variety of electronic materials and devices 
[3], such as switching of ferroelectrics [22,23] or transistors [24] and 
photovoltaics [25], as well as a wider variety of fields including plane
tary formation [8] and bone healing [26]. Several reviews provide 
further background on flexoelectricity and its wider effects in electronic 
materials [27–30]. 

Evidence for the importance of flexoelectricity in triboelectricity can 
be traced back to the work of Jamieson in 1910 [31], who showed that 
bending a piece of cellulose changed the sign of the tribocharge. This 
was taken further in 1917 by Shaw [32] who explored more materials, 
demonstrating that some were more positive with positive curvature, 
while others were more negative, and similar work has continued to the 
modern day [33]. The work of Jamieson and Shaw predates the formal 
theory of flexoelectricity by about 50 years [19,20]. Recent work has 
continued to support the connection between triboelectricity and flex
oelectricity [17,18,34–38], 

Going beyond this, we have also developed a more detailed model to 
analyze the electromechanics of single-asperity contacts [39]. The 
contact of asperities is simplified to a spherical metal indenter that is 
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pressed into a semi-infinite semiconductor slab. The deformation is 
determined using Hertzian contact solutions [40], and the electronic 
band bending is calculated by considering electromechanical and other 
relevant electronic effects. 

One unresolved issue concerns the asperity shape, for which gener
alizations that can be used to assist design of energy harvesting devices 
are desirable. In tribology, the shape of asperities is in some cases 
considered to have little importance, such as its effect on real contact 
areas [41,42] or on friction [43]. In other cases, tribological quantities 
of interest, such as leakage from a hydrodynamic film [43], creep at 
asperities [44], or wear rate in abrasives [45], are strongly dependent on 
asperity shape. 

With a focus on triboelectricity, asperity shape effects have been 
studied as surface modifications of TENGs [46,47]. Microscale patterns 
have been created on the surface of materials by molding polymers to 
solid templates [48,49] or selectively melting polymer surfaces with 
lasers [50,51]. These studies indicate that surface modifications such as 
gratings, arrays of protrusions or divots often increase charge transfer, 
enhancing TENG performance. One work compared surfaces with reg
ular arrays of microscale domes and pyramids to flat surfaces [49]. 
TENG open-circuit voltage and short-circuit current were increased by 
~50% for domes and ~500% for pyramids. These results were attrib
uted to increases in contact area, but the domes and pyramids would 
only increase the contact area by ~40% and ~30%, respectively. The 
difference in the electromechanics from the different asperity shapes is a 
significant part of this disparity. Other works have examined the effect 
of different surface morphologies on the performance of TENGs [48,52, 
53]. We will return to this at the end of this manuscript after presenting 
directly relevant theory. 

Here, we consider the effect of the asperity shape on triboelectric 
polarization, bound surface charge and electromechanical band bending 
generated at contacts. We demonstrate the size scaling, as well as scaling 
with force and material dependent terms. Our theory explains results of 
experiments with surface modified TENGs, for which surface area 
changes alone are not adequate, and provides a foundation for future 
rational design of improved energy harvesting devices. 

2. Theory 

First, we examine the effect of asperity shape on electromechanical 
potentials, i.e., its effects on electronic band bending due to strain, via 
the deformation potential [54] and the mean inner potential [55], and 
that due to strain gradients via flexoelectricity. Depending on the ma
terials involved, specific problems necessarily include other potentials. 
For example, the Nb:SrTiO3 – Pt0.8Ir0.2 case [39] requires consideration 
of the depletion potential. For this work, these material system depen
dent potentials are left aside. Unless otherwise noted, the calculations 
presented here consider a rigid indenter contacting a SrTiO3 half-space 
and focus on the response of the half-space; two contacting asperities 
can be simplified to this case by using an effective radius [56]. We 
choose SrTiO3 because it is well-characterized, but the analysis follows 
for any non-metal. Because SrTiO3 is cubic, we may ignore piezoelec
tricity. To simplify the analysis, the indenter is assumed to have 
dielectric properties of vacuum. (We will pose determining all the 
necessary parameters for other materials as a challenge to the commu
nity.) For further details regarding the calculations and relevant SrTiO3 
parameters, see Supplementary Material SN1. 

We consider the five asperity shape cases shown in Fig. 1. The 3-D 
axisymmetric cases are sphere, cylinder, and cone indenters, shown in 
Fig. 1a-c. The 2-D cases with axial symmetry correspond to indenters in 
the shape of an infinitely long cylinder or rectangular prism, shown in 
Fig. 1d-e and are referred to as a roller and punch, respectively. While 
real asperity shapes are intermediate to these, they provide bounds to 
what can be expected for more realistic shapes [45]. How the results 
scale is discussed in terms of the mean contact pressure and contact 
radius, which may be calculated for more complex asperity shapes. 

The stress field in the elastic half-space is calculated from Hertz-like 
solutions [57–59] for a sphere of radius R, a cylinder of radius R, a cone 
with half-angle α measured from the vertical, a roller of radius R, and a 
punch of half-width R. These Hertzian solutions assume the pressure 
distribution at the surface, given in Table 1, is limited to the region in
side the contact radius, where pm is the mean contact pressure, a the 
contact radius, F the force on the indenter in the 3-D cases or the force 
per unit length in the 2-D cases, and Y the Young’s modulus of the 
half-space. The superscripts s, cy, co, r, and p refer to the sphere, cylin
der, cone, roller, and punch, respectively. Note that none of these 
pressure distributions are differentiable at the edge of the contact re
gion, ρ = a. While this is physically unreasonable, Hertzian solutions 
nonetheless give results with acceptable error for many contact prob
lems [60]. In the cylinder, cone, and punch cases, the sharp corners 
cause unresolvable numerical singularities. For these cases, contact so
lutions that incorporate strain gradient elasticity [61,62] and eliminate 
this singularity are used with a length scale parameter of about l =

0.04a, corresponding to a contact radius of about 10 nm [63] (see 
Supplementary Material SN3). We also consider a third 2-D case, a 
triangular prism with half-angle α, in the scaling results. It is not 
included in further calculations because there is no strain gradient so
lution that would be needed for the sharp contact point. For discussion 
of an elastic spherical indenter, see Supplementary Material SN2. 

The results of specific cases are, of course, dependent on F, R or α, 
and Y, but two generalizations and reductions are possible:  

1. The stress inside the half-space is proportional to pm, so the strain is 
proportional to pm/Y, strain gradient to pm/aY, and polarization to 
pmμ/aY.  

2. Normalizing the coordinates r by the contact radius a results in a 
natural scaling. 

Specifically, the stresses σij, strains εij, strain gradients ∂εkl/∂xj = εkl,j, 
and flexoelectric polarizations Pi = μklijεkl,j scale as shown in Table 1, 
where μklij is a flexoelectric tensor component. 

Since SrTiO3 is cubic, there are three independent flexoelectric 
components, namely μiiii = − 36.9nC/m, μiijj = − 40.2nC/m, and μijij =

− 1.4nC/m, which are referred to as the longitudinal, transverse, and 
shear components, respectively [64]. We note that, like dielectric con
stants, flexoelectric tensor components are normally quoted in the 
zero-frequency limit. Since flexoelectric polarization is connected to the 
dielectric behavior, there can be significant changes such as near phase 
transitions [65,66]. There can also be large frequency dependencies of 
the flexoelectric coefficients and hence the polarization for some ma
terials [67]. In the analysis herein, we consider only the zero-frequency 
limit. 

Table 1 includes only the parameters that lead to simple scaling. For 
example, each stress component depends differently on Poisson’s ratio 
[57–59], so these quantities vary in a complex manner. We will now 
focus our attention on the scaling of the electromechanical potential 
ΦEM, which is obtained by determining the charge density and solving 
Poisson’s equation. 

In the strained half-space, flexoelectricity produces a polarization 
density due to the strain gradient. The potential due to a polarization 

Fig. 1. Sketches, axis definitions, and geometric parameters for the five 
indenter cases: (a) sphere, (b) cylinder, (c) cone, (d) roller, and (e) punch. 
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density P(r) can be determined by considering the equivalent potential 
produced by the bulk and surface bound charge densities, 

ϱFXE(r) = − ∇⋅P(r); ςFXE(r) = P(r)⋅n̂ (1) 

respectively, where n̂ is a unit vector normal to the surface. Far away 
from the contact in the vacuum or deep into the material, the two cancel 
so the potential decays faster than that of a simple charge; near the 
surface the surface bound charge density dominates. 

The volumetric strain εvol has two effects on the potential. First, the 
average potential in the crystal, or mean inner potential (MIP), shifts 
with strain [55]. For SrTiO3, this shift is given by φ = ∂MIP

∂εvol 
= 22.2eV. 

Also, since we are interested in charge transfer, we examine the behavior 
of the conduction band energy EC. This shifts relative to the MIP by an 
amount DC

BS =
∂(EC − MIP)

∂εvol
= − 17.2eV, known as the 

conduction-band-specific deformation potential [54]. The valence band 
could be treated similarly using the valence-band-specific deformation 
potential instead. Like the flexoelectric polarization, the potential due to 
the volumetric strain, 

(
DC

BS +φ
)
εvol(r), has a corresponding charge den

sity, qMIP,DP(r) = − ∇⋅
(
ϵ(r)∇

[(
DC

BS +φ
)
εvol

] )
, determined by solving 

Poisson’s equation where ϵ(r) is the (in general, spatially-varying) 
dielectric permittivity. Then, the electromechanical potential ΦEM(r), 
which includes the flexoelectric, mean inner potential, and 
conduction-band specific deformation potential is given by the solution 
to 

− ∇⋅
(
ϵ(r)∇ΦEM(r)

)
= qEM(r) = qMIP,DP(r)+ ϱFXE(r)+ ςFXE(r) (2) 

where qEM(r) is the total bound charge density due to electrome
chanical effects. Finally, we note that in both the solution for qMIP,DP and 
of Eq. (2), we include the image charges and dielectric screening created 
by the surface of the half-space [68]. 

In Eq. (2), if the bulk flexoelectric term ϱFXE dominates, then 
qEM∝∇⋅P∝pm/a2Y. If the surface term ςFXE dominates instead, then 
qEM∝P⋅n̂∝pm/aY. Finally, if the strain-dependent term qMIP,DP domi
nates, qEM∝∇2εvol∝pm/a2Y. Ignoring any variation in the dielectric 
permittivity that may occur due to mechanical effects, ∇2ΦEM∝qEM/ϵ, so 
the potential will scale as ΦEM∝pm/Y if either bulk term, ϱFXE or qMIP,DP, 
dominates, or as ΦEM∝apm/Y if the surface term ςFXE dominates. In our 
calculations with SrTiO3, we find ΦEM∝pm/Y. 

3. Results 

3.1. Potentials, charges densities, and electromechanical energies 

Figs. 2 and 3 show ΦEM/(pm/Y) and qEM/(pm/a2Y) plotted against 
normalized coordinates r/a for the five indenter shapes. In the 3-D cases 
(a-c), the cylinder case is clearly distinct, while the sphere and cone 
share many features. This is caused by the surface stress distribution 
being most concentrated at the edge of contact in the case of the cyl
inder, while it is most concentrated at the center in the sphere and cone 
cases. This leads to the sphere and cone sharing a similar surface charge 
density (see Figs S1-S5c). When the effect of the sharp corner of the cone 
is reduced by strain gradient solutions, the sphere and the cone solutions 
approach each other closer, further supporting this reasoning (see Figs 
S1 and S3). The 2-D cases follow intuition; the roller is most similar to 
the sphere, and the punch to the cylinder. Despite the similarities in 
Figs. 2 and 3 for various indenter shapes, the scaling remains vastly 
different in accordance with Table 1. 

Understanding the energies involved in electromechanical contacts 
can give further insight into the problem. A simplified thermodynamic 
potential density Ψ, ignoring piezoelectric terms and terms with more 
than one polarization gradient, gives the following form [28]. 

Ψ = −
1
2
σijεij −

fijkl

2

(

Pk(r)
∂εij(r)

∂xl
− εij(r)

∂Pk(r)
∂xl

)

−
1
2

ϵ− 1
ij Pi(r)Pj(r) (3) 

The strain energy density is E′
strain(r) = σij(r)εij(r)/2. The stress and 

strain are proportional to pm and pm/Y, respectively when plotted 
against the normalized axes r/a. Therefore, the total strain energy in
tegrated over the whole half-space volume Ω is Estrain =
∫

ΩE′
strain(r)dr∝a3p2

m/Y. For example, the total strain energy for spherical 

contacts is Es
strain∝

(
F5/RY2

)1
3, and, from the calculations, Es

strain/

(
F5

RY2

)1
3

=

2.6. 

The flexoelectric energy density is E′
FXE(r) =

fijkl
2

(

Pk(r)
∂εij(r)

∂xl
−

εij(r) ∂Pk(r)
∂xl

)

where f is the flexocoupling tensor defined by μijhl = ϵhkfijkl. 

The strain and polarization are proportional to pm/Y and pmμ/aY, 
respectively, so the total flexoelectric energy is EFXE =

∫

ΩE′
FXE(r)dr∝ap2

mμ2/Y2. For spherical contacts, Es
FXE∝Fμ2/RY, and Es

FXE/

Table 1 
Contact mechanics parameters and scaling for the six indenter shapes. σz(z = 0) is the surface stress profile, a the contact radius, pm = F/a2 the mean contact pressure, 

and σij, εij, and Pi the stress, strain, and polarization in the half space, respectively. Note that σij

(r
a

)
∝pm, εij

(r
a

)
∝pm/Y, and Pi

(r
a

)
∝μklijεkl,j

(r
a

)
∝pmμ/aY.  
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(
Fμ2

RY

)

= 3.1m/nF, where we have used μ = μiijj, the flexoelectric tensor 

component with the largest magnitude. 
Finally, the polarization energy density is E′

P(r) = ϵ− 1
ij Pi(r)Pj(r)/2. 

The polarization is proportional to pmμ/aY, so the total polarization 
energy is EP =

∫

ΩE′
P(r)dr∝ap2

mμ2/Y2. For spherical contacts, Es
P∝Fμ2/RY, 

and Es
P/

(
Fμ2

RY

)

= 1.7m/nF. Note that this scales in the same manner as 

E′
FXE, which should be expected because the only source of polarization 

we consider is the flexoelectric effect. Plots of the energy densities and 
other results are found in Supplementary Material SN5 and Figs. S8-S10. 

Compared to the strain energy, the scaling of the flexoelectric and 
polarization energies shows that the flexoelectric effect becomes more 
important when the contact radius and modulus become smaller. This 
follows the intuition that when gradients become large at small scales, 
especially the nanoscale, flexoelectricity becomes increasingly 

Fig. 2. Plots of ΦEM/(pm/Y) for different indenter shapes: (a) sphere, (b) cylinder (c) cone, (d) roller, and (e) punch. The ρ and z axes are normalized by the contact 
radius a. Contour lines are labeled in the color bar. 

Fig. 3. Plots of qEM/(pm/a2Y) for different indenter shapes: (a) sphere, (b) cylinder (c) cone, (d) roller, and (e) punch. The ρ and z axes are normalized by the contact 
radius a. Contour lines are labeled in the color bar. 
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important. 

3.2. Contribution of flexoelectric tensor components 

A less material-specific analysis can be realized by considering ΦEM 

when μijkl = 0 or when DC
BS + φ = 0, i.e., when the electromechanical 

response is due to only the deformation potential and mean inner po
tential shift or only flexoelectricity. We define 

− ∇⋅
(
ϵ(r)∇ΦMIP,DP(r)

)
= qMIP,DP(r) (4)  

− ∇⋅
(
ϵ(r)∇ΦFXE(r)

)
= qFXE(r) = ϱFXE(r)+ ςFXE(r) (5) 

where ΦMIP,DP and ΦFXE correspond to these two cases, respectively. 
Further, we consider three separate components of ΦFXE that each 
depend on only one of the three independent flexoelectric coefficients in 
a cubic system. That is, we set all but one flexoelectric coefficient to zero 
and calculate ΦFXE. These results are more applicable to materials other 
than SrTiO3; they remain dependent on the mechanical and dielectric 
properties of SrTiO3, but not on other electronic properties, notably 
including the flexoelectric coefficients. Components of the bound 
charges can be calculated similarly (see Supplementary Material SN4). 
For a sphere indenter, the result is plotted in Fig. 4, which has three 
cases: non-zero longitudinal (μiiii ∕= 0), non-zero transverse (μiijj ∕= 0), 
and non-zero shear (μijij ∕= 0) flexoelectric coefficients. ΦEM can be ob
tained by simply adding in the appropriate proportions the ΦFXE terms 
and 

(
DC

BS +φ
)
εvol(F, r), as shown in Eq. (6). 

ΦEM = μiiiiΦ
FXE
longitudinal + μiijjΦ

FXE
transverse + μijijΦ

FXE
shear +

(
DC

BS +φ
)
εvol (6) 

Fig. 4a-c and S6a-c show that the flexoelectric component contri
butions to the potential have differing shapes and magnitudes, while the 
bound charge contributions have similar shapes but with the 

longitudinal component contributing an opposite sign to the transverse 
and shear. For a normalized flexoelectric coefficient, the longitudinal 
and transverse components contribute similar magnitudes, while the 
shear contributes much more. However, as is true for SrTiO3, the shear 
flexoelectric component is often much smaller than the others [64]. 

Fig. S7a-c shows that the transverse flexoelectric component is 
largely dominant in determining the flexoelectric surface charge, except 
close to the contact edge (ρ ≈ a), where the shear component becomes 
relevant. 

4. Discussion 

We have calculated normalized electromechanical potentials and 
bound charge densities for a variety of rigid indenter shapes contacting 
an elastic half-space and described how the potentials and thermody
namic elastic, flexoelectric, and polarization energies scale with 
indenter force and size, as well as slab modulus. The shape of asperities 
is important in triboelectricity because it affects how ΦEM scales, as well 
as the shape of the potentials and charge densities, as shown in Figs. 2 
and 3. 

Fig. 4, S6 and S7 emphasize that the ratios between components of a 
material’s flexoelectric tensor control the shapes of the potential and 
charge densities. For cases unlike SrTiO3, the shapes may change 
dramatically (though the scaling remains the same). Therefore, deter
mining the relative magnitudes of the flexoelectric coefficients for ma
terials of interest is helpful in informing the design of triboelectric 
devices using those materials. 

We can quantitatively match experimental scalings for triboelectric 
experiments that have been performed with different asperity shapes 
and/or different roughness. Consider surface-modified poly
dimethylsiloxane (PDMS) films of Varghese et al. [49]. We estimate the 
increase in contact area using the reported measurements and the 

Fig. 4. Plots of (a-c) ΦEM/(pm/μ′Y) with artificial flexoelectric coefficients and (d) εvol/(pm/Y) for a rigid sphere indenter.: (a) μiiii = μ′,μiijj = μijij = 0. (b) μiijj = μ′,μiiii 

= μijij = 0. (c) μijij = μ′, μiiii = μiijj = 0. 
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images reproduced in Fig. 5g-h. We assume that the domes are 
half-spheres, that the height of the pyramids is equal to their side length, 
and that the cellulose acetate nanofiber can be modeled as homogenous, 
since the fiber size is much smaller than the domes and pyramids. Then 
there is approximately a 40% and 30% increase in surface area for 
domes and pyramids, respectively. However, they observe an increase in 
short-circuit current density of about 70% for domes and 500% for 
pyramids, as well as an open-circuit voltage increase of about 40% for 
domes, and 430% for pyramids. 

We map the pyramids to cones with half angle of 45◦ and use spheres 
for the domes with radius given by Varghese, 21 µm. Then, if the 3 N 

force is spread evenly over the artificial asperities, which have number 
density ~150 mm-2 across the 2 cm2 sample, and we take the modulus 
[69] of the Sylgard 184 PDMS to be 1.32 MPa, we can calculate the 
polarization energies EP for the two asperity shapes. For the pyramids, 

EP = 2.0m/nF
(

F
Ytan3α

)1
2

μ2 = 18kNm3 C− 2 μ2and for the domes, 

EFXE = 1.7m/nF F
RYμ2 = 6.2kNm3 C− 2 μ2. These have a ratio of 2.9, 

and the polarization energies similarly have a ratio of 3.0. These are 
compared to the relative difference between the experimental 
open-circuit voltages and closed-circuit current densities, which have 
ratios of about 3.8 and 3.5, respectively, in excellent agreement. Further 

Fig. 5. Experimental data of micro-patterned TENGs from Varghese, et al.: (a-c, d-f) Open-circuit voltage and short-circuit current, respectively, measured for a 
cellulose acetate nanofiber/micro-patterned PDMS TENG, with (a,d) flat, (b,e) dome, and (c,f) pyramid micropatterns. (g,h) SEM images of (g) pyramid and (h) dome 
micropatterns. The scalebar in both images is 50 µm. Reprinted from Nano Energy, 98, Varghese, H., H. M. A. Hakkeem, K. Chauhan, E. Thouti, S. Pillai and A. 
Chandran, A high-performance flexible triboelectric nanogenerator based on cellulose acetate nanofibers and micropatterned PDMS films as mechanical energy 
harvester and self-powered vibrational sensor, 107339, Copyright (2022), with permission from Elsevier. 
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details and additional explanations of other experimental results can be 
found in Supplementary Material SN6. 

5. Conclusion 

In conclusion, without the addition of any empirical parameters, 
using analytical models of elasticity and the consequent flexoelectric 
polarization, we have demonstrated significant dependence upon 
asperity shape which agrees with experimental results. Furthermore, we 
have provided scaling relationships so these results can be applied 
generally to assist in optimizing flexoelectric and triboelectric energy 
harvesting strategies. We pose as a challenge to the community 
measuring key materials properties such as flexoelectric coefficients and 
deformation potentials when comparing triboelectric performance. This 
work also contributes to the increasing evidence that flexoelectricity 
plays a major role in triboelectricity, as first suggested by the experi
ments of Jamieson [31] and Shaw [32] over a century ago and well 
before there was any theory for strain-gradient polarization. 
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