System Design and Verification of the Precession Electron Diffraction Technique

Christopher S. Own

Thesis defense · 2005.07.13

Acknowledgements

- People
 - L.D. Marks
 - Wharton Sinkler
 - Marks Group
 - Arun Subramanian, Jim Ciston, Bin Deng
 - Hitachi and JEOL support
 - Ken Eberly, Jim Poulos, Mike Kersker
 - Winfried Hill and Vasant Ramasubramanian
 - Shi-Hau Own
- Funding
 - Fannie and John Hertz Foundation
 - UOP LLC, STCS, US DOE (Grant DE-FG02-03ER 15457)

Overview

- I. Background
 - Motivation
 - Precession Electron Diffraction (PED)
- II. System Design
 - Instrumentation
- III. Verification
 - Simulation
 - Theoretical models
- IV. Examples
- v. Conclusions / Future Work

• • I. Background

Motivation: Routine Structural Crystallography

- In diffraction experiment we measure intensities
 - (phase information lost)

$$\Phi(k) = F(k) \exp(-i\phi(k))$$
$$I(k) = |F(k)|^{2}$$

- Recover phases to generate feasible scattering potential maps
- Need good intensities to recover correct phases
 - Else get false structure!

Motivation (cont'd)

- The crystallography workhorse: X-ray diffraction
 - Limitations for nanoscale characterization:
 - Too low S/N for small crystals, need synchrotron
 - Synchrotron: Cost / time restriction
 - Ring overlap (powder)
 - No imaging
- Solution: Electron Diffraction (ED)
 - Simultaneous imaging/diffraction
 - EDX, EFTEM, etc...
 - Readily available / inexpensive

Problem: Multiple Scattering

- Terminology:
 X-rays: *Kinematical* Electrons: *Dynamical*
- Direct Methods requires good quality intensities (<15% error)

• ED is often too dynamical:

- Want kinematical, but even thin specimens dynamical
 - Ultra-thin specimens impossible to make (except surfaces)
- Error can be 1,000's of %!
 - Hindered routine electron crystallography.

Electron Direct Methods can work!

• Data can be kinematical

- Thin specimens (surfaces)
- Some dynamical data can work
 - Channeling (good projection)
 - Phase relationships preserved statistically
 - Pseudo-kinematical EDM
 - Also called intensity mapping
 - Assumes deviation from kinematical
 - Intensity relationships preserved
 - Powder, texture patterns ⇒ *Precession*

Vincent-Midgley Precession Technique (PED)[†]

- In theory:
 - Reduces multiple scattering (always offzone)
 - Lower sensitivity to thickness
 - Reduces sensitivity to misorientation
 - "Quasi-kinematical" intensities result
 - May need correction factors (requires known structure factors)

Problems and Questions

• Previous studies:

• R-factors ~ 0.3-0.4[†]

†(J. Gjonnes, et al., Acta Cryst A, 1998.K. Gjonnes, et al., Acta Cryst A, 1998.M. Gemmi, et al., Acta Cryst A, 2003.)

• Precession was not well-understood

- Can one just use intensities?
- How to use correction factors if F_{a} not known?
 - Are they correct?
 - Is geometry-only valid?
- Our early experiments gave mixed results too

• Why didn't it work?

• How can we make it work?

II. System Design

US patent application: "A hollow-cone electron diffraction system". Application serial number 60/531,641, Dec 2004.

III. Verification

Section Outline:

oInvestigate models

Multislice simulation

Comparison of correction factors (old and new)
 Compare to experimental data
 Suggested approach for povel structures

Suggested approach for novel structures

Simulation parameters

φ = cone semi-angle
0 − 50 mrad typical

• *t* = thickness

- ~20 50 nm typical
- Explore: 4 150 nm
- g = reflection vector
 |g| = 0.25 1 Å⁻¹ are structure-defining

Precessed DP v. simulation (Ga,In)₂SnO₄ t = 412Å

⁽Own, Sinkler, & Marks, in preparation.)

Kinematical Amplitudes

Precession Intensities

(Ga,In)₂SnO₄ precession data: High-pass filtered amplitudes

	∆R (Å)
Sn1	0.00E+00
Sn2	0.00E+00
Sn3	6.55E-03
In/Ga1	5.17E-02
In/Ga2	2.37E-03
Ga1	6.85E-02
Ga2	1.22E-01

Displacement (R_{neutron} – R_{precession}):

 $\Delta R_{mean} < 4 \text{ pm}$

(Sinkler, et al. J. Solid State Chem, 1998. Own, Sinkler, & Marks, in press.)

Global error metric: R₁

- Broad clear global minimum
- R-factor = 0.118
 - Experiment matches simulated known structure
 - Compare to > 0.3 from previous precession studies (unrefined!)
- Accurate thickness determination:
 - Average *t* ~ 41nm (very thick crystal for studying this material)

t > 50 nm: needs correction How to use PED intensities

Treat like powder diffraction

 Apply Lorentz-type dynamical correction factor to get true intensity:[†]

Ultramic, 1997.

$$I_{g}^{true} \approx I_{g}^{corrected} = C_{Blackman} \times I_{g}^{exp}$$

$$C_{Blackman}(g,t,\phi) = g \sqrt{1 - \left(\frac{g}{2R_{0}}\right)} \times \left(\frac{A_{g}}{\int_{0}^{A_{g}} J_{0}(2x)dx}\right) \qquad A_{g} = \frac{\pi t}{\xi_{g}^{2}}$$
An approximation
$$\int_{C} \frac{1}{\int_{0}^{A_{g}} J_{0}(2x)dx} \int_{Correction} \frac{1}{\int_{0}^{T} (K. \text{ Gjønnes, Ultramic, 1997.} M. Blackman, Proc. Roy. Soc., 1939.})$$

Lorentz-only correction: Geometry information is insufficient

Need structure factors to apply the correction!

New Dynamical Two-beam Correction Factor

$$C_{2beam}(g,t,\phi) = F_g^{2} \left(\frac{1}{\xi_g^{2}} \int_{0}^{2\pi} \frac{\sin^2(\pi t s_{eff})}{(s_{eff})^2} d\theta \right)^{-1}$$

• Sinc function altered by ξ_g

$$s_{eff} = \sqrt{s^2 + \frac{1}{{\xi_g}^2}}$$

- A function of structure factor *F*_g
 - Some F_g must be known to use!

$$\xi_g = \frac{\pi V_c \cos \theta_B}{\lambda F_g}$$

• • • C_{2beam} correction: t = 127 nm, $\phi = 75$ mrad

• Try GITO Using intensities (F_g^2) w/ DM

	∆R (Å)
Sn1	0.00E+00
Sn2	0.00E+00
Sn3	6.55E-03
In/Ga1	5.17E-02
In/Ga2	2.37E-03
Ga1	6.85E-02
Ga2	1.22E-01

 $\Delta R_{mean} < 4 \text{ pm}$

(Sinkler, et al. J. Solid State Chem, 1998. Own, Sinkler, & Marks, in press.)

IV. Examples

- 1. $La_4Cu_3MoO_{12}$
- 2. $AI_8Si_{40}O_{96}$
- 3. Al_2SiO_5

La₄Cu₃MoO₁₂ [001] Intensities comparison

Kinematical Intensities

Conventional Diffraction Intensities

PED intensities

Proposed structure: highly ordered

- Homeotype of YAIO₃
 - Rare earth hexagonal phase
- Frustrated structure: doubling of cell along *a-axis*[†]
 - Maintains stoichiometry
- Better R-factor if twinning model introduced in refinement

[†](Griend et al., JACS 1999.)

• • PED solutions: disorder

Amplitude solution (high-pass filtered)

Intensity solution (high-pass filtered)

Al₈Si₄₀O₉₆ [001] (Mordenite): Thick (50 nm), poor projection characteristics

Kinematical amplitudes

PED intensities

Preliminary solution Amplitudes, high-pass filtered

Kinematical Solution (1Å⁻¹ resolution) PED Amplitudes Solution

Babinet solution High-pass filtered intensities

• • • $| Al_2SiO_5 [1\underline{1}0] (Andalusite)$

Conventional diffraction amplitudes

15

Non-precessed a = 7.79Å c = 5.56Å b = 7.90Å

V. Conclusions & Future Work

- Now have a better understanding of Precession
 - Reduces overall error
 - Errors at low g
 - Precession extends the usable thickness to ~ 50 nm
 - Correction factor must include dynamical type
- Good PED experiment characteristics:
 - DM maps with well-defined peaks
 - See cations, don't see light atoms
- Methods for a priori bulk electron crystallography

• • Future Work

- 1. More structures
 - Repertoire of solved structures
- 2. Aberration corrected precession
 - Test high angles experimentally
 - Fancy scanning configuration
 - Can avoid multi-beam excitation
 - Data mining
- 3. A general correction factor (iterative)
 - For thick specimens

Intensity v. phase error

Phase Error

Intensity Error

Thicker specimens: Two-beam Dynamical Coupling

Design features

- Improvements upon previous implementations
 - Versatile: digital signal generation
 - Live settings update
 - 1KHz operating bandwidth
 - Forms fine spots for reliable measurement
 - 2-fold and 3-fold aberration compensations
 - Able to form fine probe (< 25 nm)
 - Rapid alignment (15 min)

Alignment Detail

- Parallel illumination
 - Small condenser
 - Fine probe
- Specimen height
 - Meet optimal OBJ excitation
- Distortion compensations
 - Probe localization <50nm

Projector Lens Spiral Distortion

Crossover Distortion

