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CHAPTER 4

Lorentz Correction Factors

In the last chapter, it was demonstrated that electron diffraction amplitudes extracted from PED
patterns with large precession angle φ can be used with direct methods to generate very good starting
structure maps. The only processing necessary is high-pass filtering of low-index reflections. Multi-
slice simulations showed that — for a much larger range of experimental thicknesses than conventional
diffraction — PED data has low enough error such that it is sufficient for use with direct methods with-
out modification. However, the simulations also showed that this is not the case for large thicknesses (>
50 nm), and a correction of the intensities would be required when the crystal is thick.

Precession electron diffraction is intended for finding initial starting structures from unknown ma-
terials, therefore in practice usually very little a priori information about the structure will be known
when first investigating a novel material. The thickness is another piece of information that is almost
always missing. Any practical correction factor must therefore be based upon a simple model that is
highly tolerant of error within the input parameters. In other words, what is sought is a well-conditioned
model.

While the structure of a novel material is not known, useful information is known about the char-
acteristics of the PED experiment. First, the microscopist knows the geometry of the incident intensity,
as well as where the major errors in the scattered intensities lie. Additionally, it may be possible to
tell during the experiment whether the specimen spans a large range of thicknesses and/or is uniformly
very thick using morphological clues (such as edge effects), thickness fringes, or the presence of diffuse
scattering and/or Kikuchi lines. Finally, it is known that precession decreases dynamical coupling such
that systematic paths are suppressed and, at any given time, usually only one beam is strongly excited.
The simplest model that describes this is a model involving only two beams: the incident and a scattered
beam.

In this chapter, the correction factors based upon two-beam approximations will be investigated in
detail to understand how they work and when it is appropriate to apply them. The results will also give
some new insight into how PED itself works. Some of the contents will be a more accurate reworking
of the analysis previously done by Gjønnes (1997) and Vincent and Midgley (1994). First, an exact
geometrical model will be established that can be evaluated numerically. This will serve as a reference
for comparison with the Gjønnes correction factors. It will initially take the form of a simple kinematical
correction and then will be expanded to include dynamical two-beam effects. The distinction between
the kinematical geometry portion (Lorentz) and the dynamical portion will be discussed, then they will
be compared to their analogues within the Gjønnes correction factors. Lastly, a comparison of these
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models to multislice simulation will be given, with the goal of finding the limits of where each model is
applicable to real data.

The corrections based upon two-beam dynamical theory, while simple, require that the structure
factors already be known. The term forward calculation will be used to describe this, meaning that
correction requires the structure factors be known which — if they are previously known — negates
the need for calculating the correction factors in the first place. Nevertheless, the investigations of
the particular corrections described in this chapter help to elucidate the nature of PED and represent a
much simpler model with which to describe the physics of precession than the calculation-intensive full
dynamical multislice. Additionally, the tolerance for input error is investigated.

4.1. Derivation of Correction Factors

The similarities of PED to powder diffraction were recognized early on by Vincent and Midgley
(1994), who proposed the first correction factor for PED in the first paper on PED. This was based upon
a two-beam dynamical model intended for correcting powder diffraction intensities (Blackman 1939).
This correction factor was revised by Gjønnes (1997) to better describe the geometrical effects and a
number of variations of this factor have been used in the literature (Vincent and Midgley 1994; Gjønnes
et al. 1998b,a; Midgley et al. 1998; Gemmi et al. 2003). The version of the Gjønnes correction factor
intended for parallel illumination (analagous to the convergent form of the Gjønnes factor in equation
1.30) is

(4.1) Ikin
g ∝ Icorr

g =

g

√
1−

(
g

2R0

)
Ag∫ Ag

0
J0(x)dx

 Iexp
g ,

where g is the reflection vector and Ag = 2πtUg

k (as defined in Gjønnes et al. (1998a)). In the definition
of Ag, t is the specimen thickness in Ångströms, Ug is the structure factor, and k is the wavevector
magnitude of the incident radiation. Equation 4.1 represents two corrections: 1) a pre-factor to correct
for geometry (Lorentz portion) and 2) a two-beam dynamical correction (Blackman portion).

There are two problems with equation 4.1. First note that the value of Ag, which must be defined
absolutely, is critical for calculating the correct value of the integrated intensity. As pointed out in
section 1.4.2, the argument of the integrand in equation 4.1 is different from that used in the Blackman
formula (equation 1.24) by a factor of two, altering the periodicity of the Bessel function J0. The forms
of Ag used in Gjønnes (1997) and Gjønnes et al. (1998b) had conflicting definitions and, furthermore,
the structure factors (Ug) that were used to define Ag had not been clearly defined. Without knowledge
of the pre-factor constants, the correctness of Ag in these studies is not certain. The second problem
is that an assumption has been made that the geometry effects can be separated from the dynamical
scattering effects. The conditions for this approximation to hold were not specified in the derivation of
the correction factor (Gjønnes 1997).

In this section, the correction will be re-derived using kinematical and two-beam electron diffraction
theory. The re-derivation is more exact than the previous models and will be used to explore the limits
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of their approximation. For completeness, the original derivation by Blackman (1939) is included at the
end of this section in section 4.1.3. The reader is referred to Gjønnes (1997) for the derivation of the
Lorentz portion in equation 4.1.

4.1.1. Kinematical Precession

Recall from section 2.1 that the intensity measured in precession represents a finite integration of the
scattered intensity. The relevant geometry, shown previously as figure 2.1, is reproduced here as figure
4.1. The intensity scattered by the crystal is the true intensity Fg

2 multiplied by some function depen-
dent upon specimen dimensions. Intensity is scattered when this shape function — which manifests in
reciprocal space as a rod shape (relrod) — is intercepted by the Ewald sphere. The true intensity can also
be recovered by dividing the measured intensity by the value of the shape function at the interception
point, described by excitation error sg. Similarly, the true intensity can be recovered from the measured
integrated intensity from PED by dividing by the integrated shape function, in other words

(4.2) |Fg|2 ∝ Icorr
g = C(g, t, φ)Iexp

g ,

where Cg is inversely proportional to the precession integral of the shape function of the scattered
intensity.

In this derivation, we seek to evaluate the integral of the scattered intensity over excitation error that
occurs during the precession:

(4.3) Iprec
g =

∫
Ig(sg)dsg.

Equation 4.3 is more conveniently treated as an integration over the precession variable θ representing
the circuit traced by the Laue circle, given by

(4.4) Iprec
g =

∫ 2π

0
I(θ)dθ.

The change of variables can be made starting from the equation of the Ewald sphere:

(4.5) (x− kx)2 + y2 + (z − kz)2 = k2,

where k = 1/λ, and kx and kz represent the deviation of the Ewald sphere origin in x and z, re-
spectively, due to precession. For a reflection g located at (x, y) = (|g| cos θ, |g| sin θ), the Cartesian
variables can be converted to functions of θ starting with the substitution

(4.6) (g cos θ − kx)2 + (g sin θ)2 + (z − kz)2 = k2.

Simplifying using geometric identities, substituting sg for z, and utilizing |kx|2 + |kz|2 = |k|2, this
reduces to
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Figure 4.1. Reciprocal space geometry of P.E.D. in (a) x−y plane and (b) x−z plane.
The beam precesses about the z-axis maintaining constant φ. In (b), the ZOLZ (bold
dashed circle) precesses about the z-axis.

(4.7) g2 − 2kxg cos θ − 2kzsg = 0,
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where s2 is very small and has been eliminated from the previous equation. Since kz ≈ k, and kx ≈ kφ
in the limit of small φ, this is rearranged to get excitation error as a function of θ:

(4.8) sg(θ) =
g2 − 2kφg cos θ

2k
.

In kinematical scattering theory, the relrods representing the scattered intensity are described by the
inversion of the top hat function, therefore

(4.9) I(sg) =
1
ξ2g

sin2(πtsg)
sg2

.

The characteristic length ξg (also called the extinction distance) is a function of the experimental vari-
ables structure factor Fg, unit cell volume Vc, electron wavelength λ, and Bragg angle θB given by

(4.10) ξg =
πVc cos θB

λFg
.

The correction factor follows from equations 4.8 and 4.9, giving

(4.11)
∫ 2π

0
I(θ)dθ =

1
ξ2g

∫ 2π

0

sin2
{
πt
(

g2−2kφg cos θ
2k

)}
(

g2−2kφg cos θ
2k

)2 dθ ≡ 1
Ckin(g, t, φ)

.

In equation 4.11, the function within the integral over θ yields two peaks, illustrated in figures 4.1(b)
and 4.2. A relrod with g < 2R0 enters the zeroth Laue ‘bowl’ once and then exits once as θ traverses
2π. The excitation error, describing the deviation from the Bragg scattering condition, traces a cosine
curve shifted in the z-axis due to the curvature of the Ewald sphere and scaled depending upon distance
of the reflection from the origin (equation 4.8). During the precession, reflections close to the origin are
sampled slowly with smaller excitation error, so the shape of the modulus-squared of the sinc function
along the θ-axis is widened and more intensity is sampled per unit time from low-g reflections than
from high-g reflections. The higher-index reflections are more rapidly sampled, hence the squared sinc
functions are narrow in the θ-axis. A large cone semi-angle φ increases the range of sg over which
the integration occurs, and in practice almost all reflections (except for very low indices) are rapidly
sampled.

The model in equation 4.11 is useful as a starting correction, especially for thin specimens and
large precession angle. However, apart from geometry errors, dynamical effects become prominent
with increasing thickness, as evidenced in the lobstertail error plots in figure 3.9. In order to deal with
specimens that are thicker, a more sophisticated model is needed to account for these effects.
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Figure 4.2. Intensity collected (Ig) and excitation error (sg) during the integration
in the kinematical model, plotted against azimuthal angle for a low-index reflection
(|g| = 0.1R0, where R0 ≈ φk = 0.96 Å). Parallel illumination, with t = 100 Å, φ = 24
mrad, 200 kV.

4.1.2. Introduction of Two-beam Dynamical Excitation

When sg = 0, equation 4.9 reduces to I(sg) = (πt/ξg)2, meaning the diffracted intensity can exceed
the incident intensity when t > ξg/π. This is not physical, and a better model is realized by considering
the interaction of two beams propagating in a perfect crystal (Hirsch et al. 1965). The solutions to
the analytical equations that describe this two-beam interaction are a pair of Bloch waves with relative
magnitudes dependent upon the orientation of the crystal (e.g., the linear combination of the two must
always meet the boundary condition at the exit surface). The scattered intensity is governed by a new
deviation parameter called the effective excitation error, defined as

(4.12) seff
g =

√
s2
g −

1
ξ2g
.

The effective excitation error modifies equation 4.9 to account for dynamical exchange between the
transmitted and diffracted beams, giving
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(4.13) I(sg) =
1
ξ2g

sin2(πtseff
g )

(seff
g )2

.

When ξg > t, the scattered intensity behaves like a conventional sinc function (with new scaling and
periodicity — see the solid curve in figure 4.3). However, when ξg < t, the scattered intensity at zero
excitation error begins to fall, creating a minimum between two nodes centered about sg = 0 for some
combinations of t and ξg. The most dramatic change occurs when the argument of the sine function in
the numerator of equation 4.13 becomes nπ, where n is an integer (e.g., t

ξg
= n), at which point the

scattered intensity at sg = 0 falls to zero (dashed curve in figure 4.3).
The two-beam correction factor for precession thus comprises the integration along sg of intensity

profiles that vary with the extinction distance and specimen thickness (extinction distance is in turn
inversely proportional to the structure factor). It models the exchange of intensity between the diffracted
and transmitted beams and is valid when only one diffracted beam is strongly excited. Substituting 4.12
in 4.11, the exact two-beam correction factor is obtained:

(4.14)
∫ 2π

0
I(θ)dθ =

1
ξ2g

∫ 2π

0

sin2(πtseff
g )

(seff
g )2

dθ ≡ 1
C2beam(g, t, φ)

.

Figure 4.3. Scattered intensity (Ig) v. excitation error (sg) in the two-beam model.
Thickness t = 500. For the solid curve ξg = 1500 Å and for the dashed curve ξg = 500
Å (intensities not to scale). The binodal behavior occurs when t > ξg.
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4.1.3. The Blackman Formula Revisited

In the early paper by Blackman (1939), the intensities of powder rings were elegantly described by two-
beam dynamical theory. Using the same approach as presented in the previous section, the Blackman
formula arises from a simple identity of the integrated scattered intensity. Equation 4.13 can be rewritten
in slightly different form:

(4.15) Ig = I0
sin2Ag

√
(W 2 + 1)

W 2 + 1
.

Here, I0 is the incident beam intensity, assumed to be 1 in equation 4.13, Ag = πt
ξg
∝ Fgt, and

W = sgξg. In powder and polycrystal diffraction, each constituent crystal is illuminated off of the
zone axis by some angle φ, causing a corresponding excitation error for a given g. A simple change of
variables gives the excitation error as a function of this angle: sg = 2kθφ. If the crystal is rocked with
angular speed ω = dφ

dt , the total reflected intensity becomes

Itot =
I0
ω

∫ +∞

−∞

sin2(Ag

√
(W 2 + 1))

W 2 + 1
dφ

∝ I0
2k2θω

Fg

Vc

∫ +∞

−∞

sin2(Ag

√
(W 2 + 1))

W 2 + 1
dW.(4.16)

The integration of the sinc function in equation 4.16 is equivalent to π times the integral from 0 to
Ag of the zeroth order Bessel function. This identity gives the basic form of the Blackman formula:

Itot = Idyn
g =

πI0
2k2θω

Fg

Vc

∫ Ag

0
J0(2x)dx

∝ Ag

∫ Ag

0
J0(2x)dx.(4.17)

It is important to note that the structure factors used to calculate Ag must be known as accurately as
possible or the periodicity and amplitude of the integral will be altered. Figure 4.4 shows equation 4.17
plotted for the three strongest reflections in GITO. The strongest reflection has the greatest average in-
tensity, and the average intensities decrease with decreasing structure factor. Note that in some thickness
ranges such as 350-500 Å, the intensity of the strongest reflection drops below that of the next-strongest
reflections.

The plots in figure 4.4 represent the Bessel integral for exact thickness values, however in real
specimens there is usually some thickness variation ∆t . The effect of thickness averaging on equation
4.17 in PED has previously been pointed out by Gjønnes et al. (1998b). In this model, ∆t will generate
a range of oscillation periodicities; superposition of scattered intensity from a range of thicknesses
generates an effective curve that has reduced oscillation amplitude and slightly decreased intensity. The
behavior at small Ag, however, will remain essentially the same. In other words, the integral scales
linearly with Ag regardless of thickness variation for small Ag, but for large Ag the oscillations are
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Figure 4.4. Equation 4.17 plotted for the three strongest reflections in GITO. The
oscillation periodicities are slightly different because the extinction distance ξg varies
between reflections. The extinction distances are 580 Å, 660 Å, and 780Åfor the 401̄,
003, and 206 reflections, respectively.

damped and converge more rapidly to their final value when ∆t 6= 0. This is advantageous because
strong reflections will more likely maintain kinematical phase relationships between each other when
there is some variation in thickness (recall equation 1.27).

4.2. Comparison between models

Five models of precession have now been discussed. To summarize, they are:

• Finite integration limits:
(1) Kinematical integral over sg (Lorentz portion);
(2) Dynamical (two-beam) integral over seff

g ;
• Gjønnes form:

(3) Lorentz portion (approximation of (1));
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(4) Lorentz and Blackman combined (approximation of (2); the Blackman portion has
infinite integration limits);

• (5) Multislice (described in chapter 3).

Table 4.1 shows the different forms of the correction and some nomenclature by which to refer to them
in the following sections. The fact that the Blackman formula also represents an integration of the two-
beam condition is understood. However, for naming convenience, correction (2) will be denoted C2beam

while correction (4) will be denoted CBlackman.
The multislice model is exact and effectively describes the physical behavior of PED, as demon-

strated in section 3.2. Multislice will serve as the reference for comparing the approximate models
listed above. We begin with a general discussion of their relationships, looking at trends from a theo-
retical standpoint. Later in this section, these relationships will be proven in practice by comparing the
effectiveness of the correction factors at linearizing the simulated datasets.

4.2.1. Expected Trends

The integration limits along sg are an important characteristic within the proposed models. Assuming
for the time being that the scattered intensity in precession is always either kinematical or two-beam
in nature (not n-beam where n > 2), the corrections CGj and CBlackman approximate the more exact
corrections Ckin and C2beam only if the precession has integrated nearly all of the scattered intensity.
The conditions where this is satisfied are investigated below.

Figure 4.5 shows the behavior of the integral of the squared sinc function as a function of the
integration limits. Most of the intensity is contained within the first period of the sinc function, and
98% of the intensity is sampled by integrating 5 periods. Beyond 5 periods, the integral converges
toward unity more slowly, and 99% of the intensity is sampled only after integrating 10 oscillation
periods. Depending upon the detector sensitivity and the amount of thickness averaging, experimental
error is often within 3-5%, hence the integral can be considered complete as long as 5-10 periods are
sampled and the sampled periods include the region near sg = 0. The latter constraint arises because
the correction factors are inversely related to the integrated intensity; if only a tail of the squared sinc
function is sampled, the integrated intensity is very small and both experimental measurement and
calculation become unreliable due to, respectively, insufficient signal-to-noise ratio and numerical error.

This behavior is still true when two-beam dynamical effects are introduced. The binodal curve that
occurs when t > ξg exhibits the same behavior except the intensity within the tails does not damp as
rapidly as in the squared sinc function (see the dashed curve in figure 4.3). The consequence is that a
larger number of periods must be sampled for complete integration. The Blackman integral is a bipolar
integration, therefore in order to apply it to precession data, all correction factors within the dataset must
represent relatively complete integrations over both positive and negative excitation error.

To understand where the approximation CBlackman breaks down, it must be noted where the inte-
gration does not sufficiently sample the intensity scattered into the reciprocal lattice rods. Figure 4.6(a)
shows the limits of the excitation error in the PED experiment. The minimum negative excitation error
exceeds the maximum positive excitation error, and their ratio scales roughly with g. For example, the
most positive excitation error occurs at the center of the Laue bowl when g = R0 (reflection g in 4.6(a)),
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Figure 4.5. The squared sinc function (a) and the integral of the sinc function (b)
plotted against excitation error for a crystal thickness of 500 Å. The integral converges
rapidly toward unity as indicated by the arrows: 98% of the intensity is sampled when 5
oscillation periods are integrated, and 99% of the intensity is sampled by 10 oscillation
periods.

giving sg = k(1 − cos 0.024) ≈ 0.012 Å−1 for the experimental conditions of 200 kV and 24 mrad
cone semi-angle (k is about 40 Å−1). The most negative excitation error for reflection g is sg ≈ 0.035
Å−1. Typical extinction distances for strong reflections are on the order of a few hundred Ångströms
or greater, and crystal thicknesses are normally greater than 50 Å, giving an oscillation periodicity of
< 0.005 Å−1 for the strongest reflections. Under these conditions, over a dozen periods of the shape
function will be integrated as illustrated in figure 4.6(b).

The worst-case scenario occurs when the sinc-like function describing the scattered intensity has a
large period in reciprocal space. This will occur when extinction distance (large structure factor) and
specimen thickness are small, both on the order of 50 Å. This is very rare because the smallest ξg occurs
for the strongest reflections, of which there are not many, and specimens are usually more than 200 Å
thick. Recall the earlier example where the integration limits were -0.035 Å−1 and 0.012 Å−1 for a
reflection at g = R0. For a material with t = 250 Å and ξg = 60 Å, only about 7 oscillations will be
integrated and the Gjønnes corrections will have greater than 15% error. For GITO, which has a very
large unit cell volume, and correspondingly large extinction distance of 580 Å for its strongest reflection
(index 401̄), the intensity will be sufficiently integrated under most experimental conditions.
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Figure 4.6. (a) The integration range ∆sg for reflection g located at x = R0. Excita-
tion error is positive in the −z direction. (b) The scattered intensity over the range ∆s
from (a) for a crystal with t = 200 Å and ξg = 250 Å.

When g > 2R0, positive excitation error does not occur. Corrections CGj and CBlackman break
down beyond this point and are no longer applicable. However, the correction factors with finite inte-
gration limits (Ckin and C2beam) will still be applicable slightly beyond 2R0 because the negative half
of the sinc function is still integrable. Nevertheless, the correction factor will soon blow up beyond 2R0

and will be much less practical than simply extending the ZOLZ radius by increasing the cone angle φ
(figure 4.7). In other words, the precession angle should be chosen such that the largest g of interest
in the diffraction pattern is smaller than 2R0 by at least 0.25R0. Reflections with sufficient intensity
to be measurable are typically within about 1.5 Å−1, so φ = 20-25 mrad (at 200 kV) is the minimum
acceptable angle for PED studies where correction factors are applied.
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Figure 4.7. The kinematical correction factor Ckin for crystal thicknesses between
100 Åand 600Å, for φ = 24 mrad. The correction factors behave nearly identically
(with scaling) for g < 1.8 Å−1, corresponding to about twice the radius of the zeroth
order Laue zone (2R0). Beyond 2R0, the correction factor is inversely proportional to
the area within the tails of the relrod where there is very little scattered intensity, and
the correction factor blows up.

Exploring cone angle selection further, recall that the structurally important reflections generally fall
within the band g = 0.25-1.5 Å−1, so it is advantageous to have larger cone angle to increase the positive
limit of integration within this band (e.g., deepen the Laue bowl). Furthermore, recall from chapter
3 that going off-zone reduces simultaneous excitation of multiple strong reflections, thereby reducing
amplitude errors in the PED dataset. Fortuitously, the constraints necessary for good integration coincide
with the reduction of dynamical effects: large cone angle improves the correction factors by extending
the integration limits along sg, and additionally reduces multiple scattering effects such that two-beam
theory is adhered to better.

4.2.2. Comparison of Calculated Corrections Factors

The cases where the Gjønnes forms CGj and CBlackman deviate from the finite integration corrections
Ckin and C2beam will be illustrated first. Figure 4.8 shows C2beam and CBlackman calculated for a
number of thicknesses and tilt angles. Dynamical effects are reduced in thin crystals, so C2beam and
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CBlackman (the full corrections) converge with the geometry-only corrections Ckin and CGj , respec-
tively, in the limit of small t (applicable in figures 4.8(a)-(c)). Figures 4.8(a)-(c) represent small thick-
ness, where the agreement between C2beam and CBlackman models is poorest. A number of conclusions
can be drawn from the figures:

• Small thickness produces a large oscillation period in the relrods, meaning that the integration
along sg is incomplete for many reflections. Therefore for small t, CGj represents a poor
approximation to Ckin; in other words, CBlackman does not match CGj (figures 4.8(a)-(c)).

• Small cone semi-angle φ combined with small t results in the worst agreement between C2beam

and CBlackman (figure 4.8(a)).
• Larger cone semi-angle improves the agreement between Ckin and CGj (figure 4.8(b)-(c)) due

to larger integration limits along sg.
• The dynamical effects are reduced at small t, therefore Lorentz geometry dominates the correc-

tion factor. The tiny peaks on the CBlackman curve in figure 4.8(c) are dynamical corrections.
• CBlackman converges with C2beam for larger thickness because periodicity in the relrod is

small. Dynamical effects are accentuated, therefore a large correction is necessary for many
reflections 4.8(d). For very large thickness, the dynamical correction is much larger than the
geometry background.

As seen in chapter 3, the small thickness regime is where a correction factor is not strictly neces-
sary; it is instead the large thicknesses (> 50 nm) where the correction factors are needed. For crystals
with large thickness, the shape function has much smaller periodicity, so the integration within finite
limits converges toward the integration over all excitation error and correction CBlackman is a good ap-
proximation to C2beam. This agreement is demonstrated in figure 4.8(d): the whale-shaped background
curve (Lorentz contribution) is consistent between the two corrections at 634 Å, and the peaks match to
within a few percent. Note that the corrections are plotted as curves to accentuate the peaking and the
correction factors are not really continuous: each peak represents a correction for a specific reflection.

At large thickness, dynamical effects naturally begin to dominate. This is clearly seen in figure
4.8(d), where many reflections within the structure-defining regime 0.25-0.75 Å−1 have large correc-
tions above the background curve. The key observation is that the correction factor selectively corrects
reflections that have large error due to dynamical scattering. A second major point is that at large
thickness, where relrods have small oscillation period, the geometry can indeed be separated from the
thickness-dependent dynamical effects and the geometry can be approximated in the limit of moderate-
to-large thickness byCGj which is independent of thickness. The net correction is reduced to the product
between the Lorentz and Blackman terms.

Figure 4.9 shows the trends in more detail using plots of C2beam for various thicknesses (increasing
horizontally) and cone angles (increasing down each column). The thicknesses are large enough that
CBlackman is a good approximation and will yield similar results for all plots except the top left (φ
= 10 mrad, t = 32 nm). Small cone angles yield incomplete integration of scattered intensity and the
errors become substantial beyond g = 2R0. The integration is fairly complete with larger cone angle,
evidenced by the decay of dynamical-type corrections (spikes) at higher g within the plots. Large
corrections are necessary for the reflections in the structure-defining range of 0.25-1 Å−1. For very
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thick crystals (right-most column), dynamical effects extend out to very high spatial frequencies in the
diffraction pattern, and their corrections extend to greater g correspondingly.

4.2.3. Application to Multislice Data Sets

The results from the previous analyses showed that CBlackman is a good approximation to the exact
two-beam correction factor C2beam in the thickness regime where a correction would be necessary
(> 10-20 nm). In ab initio structure studies, the structure factors necessary for either correction are
not available so the obvious tendency would be to apply a geometry-only correction. This approach
requires only two pieces of information — an estimate of thickness and the cone angle — circumventing
the need for forward calculation. Unfortunately, this proves to be a rather poor approach at the larger
thickness regimes where the correction factors are needed. This seems counterintuitive, but the geometry

Figure 4.9. Tableau of correction factor plots for the GITO system calculated for var-
ious cone semi-angles and specimen thickness. The constituent plots represent C2beam

v. g. The plots in the 10 mrad row have a cutoff of g = 0.9 Å−1 because for small cone
semi-angle the correction factor blows up at high spatial frequencies.
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correction is non-selective, so many intensities that need a large correction do not get the boost and
weaker reflections can become too strong.

The kinematical Lorentz correction Ckin applied to simulated PED amplitudes is shown in figure
4.10 for thickness of 16, 32, and 63 nm. Refer to figure 3.8 for the uncorrected intensities. The am-
plitudes are slightly improved for 16 nm crystals, however there is no clear improvement for the 32
nm and 63 nm specimens. In thin crystals, almost none of the reflections have two-beam corrections.
The weak reflections spread out along the z-axis for thick crystals because the dynamical corrections
for the coupled beams have been omitted. Because there is not much correlation between precession
geometry and the beam intensity, the strongly coupled beams will receive insufficient correction under
most circumstances.

This helps to explain why the R-factors were much worse in the AlmFe and Ti2P studies using
intensities corrected only for geometry (Gjønnes et al. 1998a; Gemmi et al. 2003) versus the AlmFe
study utilizing the full correction (Gjønnes et al. 1998b). The reported R1 values for the structures
found using CGj-corrected intensities were 42% and 36%, respectively, versus 32% for the structure
found using CBlackman. The most uncertain step in the first two studies was the merging of multiple
projections. This is to be expected with the crystal thickness on the order of 100 nm. The two-beam
dynamical effects would be severe, and the reliability of scaling for common reflections is doubtful. The

Figure 4.10. Multislice amplitudes with correction factor Ckin applied.
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preferred solution is to simply use thinner crystals (e.g., fine probe near the specimen edge) and remove
the reflections near the transmitted beam instead of treating the intensities for precession geometry.

If structure factors are known, as in the case of partially-solved structures or where some structure
factors have been obtained through other means such as CBED, then the C2beam correction may be
used. Figure 4.11 shows the application of the full corrections, some of which were shown in figure
4.9, to correct multislice amplitudes from figure 3.8. The top two rows of plots show that there is some
divergence between C2beam and CBlackman at small precession cone angle. This is less of a problem at
large thickness, but in any case the error is not more than 10%. At larger cone semi-angles of 24 mrad
and 75 mrad, C2beam and CBlackman are virtually identical and only C2beam-corrected plots are shown
for those cone semi-angles.

The corrections work very well for thicknesses in the regime of 48-100 nm for the GITO structure.
In this regime, the weak reflections still exhibit some residual offset, however the intensity ordering is
very good. The residual offset occurs because there is always a small amount of multi-beam coupling
around the ZOLZ ring and the stronger beams will contribute some intensity to some of the weaker
beams through short systematic paths. The strongest beams will be weakened slightly as they cou-
ple with the weakest beams surrounding them, giving rise to an apparent curvature in the amplitude
reference plots. This effect is most pronounced in the 50-75 nm thicknesses.

At very large thickness (> 90 nm), the corrected intensities exhibit a minor inflection. This is a
residual dynamical feature attributed to n-beam intensity exchange. The inflection is less pronounced
for φ = 75 mrad, but occurs for a similar set of reflections (the strongest ones) regardless of changing
experimental conditions. The inflected reflections all have extinction distance less than the specimen
thickness and do not appear to lie in a specific band of g in the structure-defining range of 0.25-0.75
Å−1.

The distribution of the reflections is shown expanded in figure 4.12 for the case of t = 127 mm,
φ = 75 mrad, and the indices of the strong reflections are labeled. The spread at low structure factor
amplitude comprises weak reflections from the entire range, and reflections of varying spatial frequency
ranges are distributed throughout, clearly indicating that the correction factors are applicable to reflec-
tions at all spatial frequencies. The nonlinear behavior evident in the corrected intensity shows that
n-beam effects are still present, however the overall behavior of the dataset is linear. The fact that the
inflected strong reflections span a range of g and do not seem to preferentially lie in a specific band
of spatial frequencies indicates that the primary errors are due to weak dynamical excitations between
neighboring beams and are not due to interaction between simultaneously-excited strong beams.

An interesting exercise is to investigate the effect of error in the forward calculation. This is a crude
test for determining how well-conditioned the correction factor model is. Noisy structure factors were
generated using the algorithm

(4.18) Fnoi
g =

(
1 +

e

100
× (nrand ∗ 2− 1)

)
F kin

g ,

where e is the percent error and nrand is a random number between 0 and 1. The error introduced is
bipolar and independent of the structure factor, so it is not intended to model dynamical effects. The
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Figure 4.12. Detail plot of simulated intensities for t = 1268 Å corrected usingC2beam.
The distribution of the intensities with g is indicated by symbol. Weak intensities from
the entire range of g contribute to the spread at low amplitude, showing that dynamical
effects are not strongly tied to spatial frequency (except in the continually multiply-
excited condition near the transmitted beam).

R-factors for the structure factors with noise added are given in table 4.2. Each dataset had a different
noise profile to control for any serendipitous correction behavior.

The datasets corrected with a C2beam that has been calculated using the noisy structure factors were
then plotted against the true structure factor. Figure 4.13 shows the corrected simulated datasets with

Table 4.2. R1 for the structure factors with noise added using equation 4.18.

Thickness 10% error 20%error 40%error
— 24 mrad —

400 9.734 20.122 41.498
800 9.800 21.315 39.140

— 75 mrad —
400 10.492 20.103 40.601
800 10.077 19.266 40.528
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largest noise profiles in the correction factors. R1 values have been calculated for each set and are given
in table 4.3. The R-factors of the corrected data shown in that table are much lower than the error
contained within the inputted data. The improvement is, however, dependent upon the experimental
conditions, which means that the geometry term plays a substantial role here. It is important to note that
while the approach yields low R-factors, the plots in figure 4.13 indicate that the correction factors do
not strongly preserve intensity relationships. This is to be expected, since there is no way that equation
4.14 can predict the correct structure factor. However, the moderately well-conditioned character of this
algorithm does make way for a potential iterative correction factor scheme, wherein a poor starting set
of structure factors might be refined into more accurate structure factors by applying a priori constraints
and then refining based upon a statistical two-beam dynamical model.

We conclude this section by mentioning that the mechanism behind some of the residual dynamical
behaviors are not manifestly obvious. For example, the R-factor is lower for larger thickness (also
observed qualitatively in figure 4.11). This might be explained by the fact that the integral over excitation
error converges to a constant in the limit of large t. Under this condition, the correction factor behavior
is dominated by the prefactor 1/ξg. In other words, equation 4.1 (which holds within the very large
thickness regime) becomes

Figure 4.13. Multislice datasets corrected with C2beam using structure factors with
40% noise added. The abscissa within each plot represents the true kinematical struc-
ture factor. R-factors for these plots are given in table 4.3.
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Table 4.3. R1 for C2beam-corrected intensities using noisy structure factors. Table
values in percent.

Thickness 10% error 20%error 40%error
— 24 mrad —

400 9.370 9.398 9.501
800 6.991 6.977 7.019

— 75 mrad —
400 15.337 15.480 15.622
800 12.716 12.694 12.807

(4.19) Ig ∝ FgIg.

Most intensities, except for the weakest ones, are in the regime of large Ag where the Bessel integral
has converged, resulting in a more consistent behavior. Also, surprisingly, theR-factors for φ = 75 mrad
are worse than for φ = 24 mrad. This is counter to the trends seen so far, which almost universally show
that large precession cone angle is favorable. The exact mechanism behind this is not clear and requires
further analysis in a future study.

4.3. Discussion: Approach for Solving Novel Structures

For precession to become a reliable and widespread technique for generating good starting structure
models from electron diffraction data, it must be fast and consistent. Chapter 3 showed that it is natively
psuedo-kinematical for small-to-moderate thickness regimes, with primary errors in the range of g <
0.25 Å−1. PED offers a new working range of up to 40-50 nm crystal dimension, representing a very
favorable regime for dealing with real-world bulk structures. The next step, covered in detail within this
chapter, has been to extend the capabilities to even greater thickness by means of correction factors.

It has been shown here that if structure factors are known, the correction generated by a two-beam
dynamical model is quite successful up to extraordinary thickness (beyond 160 nm). This result proves
that PED adheres very closely to two-beam dynamical scattering, especially at large thickness and large
precession angle. It also shows that the data are affected by n-beam effects, as seen in the structure
factor plots where there remain some residual nonlinearities that depend upon thickness. The effects,
however, vary systematically with increasing experimental thickness and angle, and are slowly varying
with changing experimental conditions.

The two-beam dynamical model, while fairly accurate, is unfortunately not immediately practical
for generating an a priori correction factor for general use. This is because successful correction for
large thickness requires a forward calculation: the structure factors must be known before the crystal
structrure can be solved. Nevertheless, the analyses do give some new tools for enhancing ab initio
structure solution using PED and open the way toward less complex iterative structure solution methods
than multislice, which requires both structure factors and phases.
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The structure solution in chapter 3 on GITO already made use of a crude form of the correction
factors that were investigated in this chapter. In section 3.1 a simple modification was made to the
experimental precession data from GITO (figure 3.4(a)) that appeared to linearize the measured ampli-
tudes to a kinematical approximation. This simple approach involved using the square of the amplitudes
— the intensities — instead of the amplitudes to solve with direct methods. The structure maps that
were generated from this procedure had identical atom positions to the solution found using high-pass
filtered amplitudes, however it more clearly displayed some of the atom positions (e.g., clearer peaks)
that were very close to the noise floor in the amplitude solution. This is an interesting behavior for
which an explanation is not manifestly obvious.

The underlying principle can be found by examining the limits of the Blackman formula 1.24. By
rearranging the Blackman equation, the measured intensity Idyn

g from a crystal of greater than moderate
thickness (t > 25 nm) becomes

(4.20) Idyn
g ∝ F kin

g

∫ Ag

0
J0(2x)dx.

In the limit of large Ag, the integral converges to a constant of 0.5. Therefore, when the thickness is
very large or if g is a strong reflection,

(4.21) Idyn
g ∝ F kin

g .

In effect, even though not all reflections necessarily obeyed equation 4.20, the important reflections
(the strong ones) did and became more linearized toward pseudo-kinematical values. The fact that
weaker reflections might not obey equation 4.20 offers a mechanism as to why the background in figure
3.6 contains noisy oscillations.

In a priori investigations of novel structures, a clear path for how to treat the data has now been
elucidated. There is overwhelming evidence that large cone semi-angle φ is beneficial to the quality of
the data. Additionally, thin specimens are advantageous because they decrease error, and the thinnest
ones (< 15 nm) are easy to treat via a kinematical correction for geometry. The geometry corrections
Ckin and Cgj , counterintuitively, are not favorable. The low spatial frequency reflections contained in
the range g < 0.25 Å−1, which are usually weak, exhibit the largest dynamical error because they are
near the transmitted beam and are almost always undergoing simultaneous excitation with other beams
during the precession experiment. Unless important reflections lie within that range for the structure
under investigation, they should be high-pass filtered regardless of whether correction factors are used.

The requirement for forward calculation is an unfavorable one because precession is still not able to
solve novel structures from data that is taken from very thick specimens. The effects are slowly varying
with thickness if a large hollow-cone angle is used, and complementary methods can indicate the ap-
proximate thickness regime. Therefore, the conditions giving rise to large dynamical errors in the data
can usually be avoided. The major breakthrough from this chapter is that there is strong evidence show-
ing that the structural electron crystallography problem has been reduced from a many-beam problem
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to a largely two-beam one. This is a major simplification and future methods, keeping in mind that |Fg|
is all that is required for the forward calculation, will need to take advantage of this new understanding.

The methods presented in chapter 3 should give favorable starting structure solutions for structures
that project well, e.g., they exhibit the property that scattered intensities fall within an already pseudo-
kinematical approximation (section 1.4). The use of intensities rather than amplitudes is advantageous
in the moderate-to-large thickness range (t = 25-75 nm) if used with large cone angle. This method must,
however, be used with caution since dynamical behaviors in uncorrected intensities may be substantial at
the top of the thickness range for some materials. A classic example is where two neighboring reflections
are both strong: a clear path for strong dynamical exchange exists in such a case. Reflections near the
transmitted beam predictably contain the largest dynamical errors, and in a priori structure studies it
is recommended that those reflections be removed using high-pass filtering except in cases where such
beams are structurally important, such as for large superstructures. A flowchart describing a suggested
solution procedure is given in figure 4.14.
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Figure 4.14. Flowchart for generating a starting structure model from a PED data set.




