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ABSTRACT

System Design and Verification of the Precession Electron Diffraction Technique

Christopher Su-Yan Own

Bulk structural crystallography is generally a two-part process wherein a rough starting structure model
is first derived, then later refined to give an accurate model of the structure. The critical step is the deter-
mination of the initial model. As materials problems decrease in length scale, the electron microscope
has proven to be a versatile and effective tool for studying many problems. However, study of complex
bulk structures by electron diffraction has been hindered by the problem of dynamical diffraction. This
phenomenon makes bulk electron diffraction very sensitive to specimen thickness, and expensive equip-
ment such as aberration-corrected scanning transmission microscopes or elaborate methodology such as
high resolution imaging combined with diffraction and simulation are often required to generate good
starting structures.

The precession electron diffraction technique (PED), which has the ability to significantly reduce
dynamical effects in diffraction patterns, has shown promise as being a “philosopher’s stone” for bulk
electron diffraction. However, a comprehensive understanding of its abilities and limitations is necessary
before it can be put into widespread use as a standalone technique. This thesis aims to bridge the gaps
in understanding and utilizing precession so that practical application might be realized.

Two new PED systems have been built, and optimal operating parameters have been elucidated. The
role of lens aberrations is described in detail, and an alignment procedure is given that shows how to
circumvent aberration in order to obtain high-quality patterns. Multislice simulation is used for investi-
gating the errors inherent in precession, and is also used as a reference for comparison to simple models
and to experimental PED data. General trends over a large sampling of parameter space are determined.
In particular, we show that the primary reflection intensity errors occur near the transmitted beam and
decay with increasing angle and decreasing specimen thickness. These errors, occurring at the lowest
spatial frequencies, fortuitously coincide with reflections for which phases are easiest to determine via
imaging methods. A general two-beam dynamical model based upon an existing approximate model
is found to be fairly accurate across most experimental conditions, particularly where it is needed for
providing a correction to distorted data. Finally, the practical structure solution procedure using PED is
demonstrated for several model material systems.

Of the experiment parameters investigated, the cone semi-angle is found to be the most important
(it should be as large as possible), followed closely by specimen thickness (thinner is better). Assuming
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good structure projection characteristics in the specimen, the thickness tractable by PED is extended
to 40-50 nm without correction, demonstrated for complex oxides. With a forward calculation based
upon the two-beam dynamical model (using known structure factors), usable specimen thickness can be
extended past 150 nm. For a priori correction, using the squared amplitudes approximates the two-beam
model for most thicknesses if the scattering from the structure adheres to psuedo-kinematical behavior.
Practically, crystals up to 60 nm in thickness can now be processed by the precession methods developed
in this thesis.
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