ABSTRACT

Synthesis, Shape, and Surfaces of Strontium and Barium Titanate Nanocrystals

Lawrence Crosby

The atomic surfaces structures of shape-controlled oxide supports prepared hydrothermally result in nanocrystals for use as model catalysts to bridge the "materials gap" from studies on single crystals. SrTiO₃ (001), (110), and BaTiO₃ (001) surfaces are investigated using several techniques, and synthetic approaches to obtain these materials are discussed in detail.

The Wulff shape of SrTiO₃ was determined to be an octadecahedron with six {100} facets and twelve {110} facets. TEM measurements of the faceting ratios $h_{110}:h_{100}$ were found to agree well with surface energy ratios $\gamma_{110}:\gamma_{100}$ derived from first-principles calculations.

Using aberration-corrected HREM, the surface structure of $\{110\}$ -faceted SrTiO₃ nanoparticles synthesized solvothermally using glycerol as the surfactant yielded (n \times 1) reconstructions with n=3 or 4. These structures are titania-rich and contain tetrahedrally coordinated TiO₄ units, similar to prior observations for SrTiO₃ (110) single crystal surfaces.

Aberration-corrected HREM investigation of SrTiO₃ nanocuboids made using caprylic acid, ethanol, and also BaTiO₃ nanocuboids revealed that the (001) surfaces for all these nanoparticles are terminated with a TiO₂ double layer. These results are similar to prior

4

observations of TiO2-rich surface reconstructions on SrTiO3 nanocuboids made hydrother-

mally and single crystals prepared via wet chemical etching.

Pt and Pt deposited onto SrTiO₃ nanopolyhedra were investigated by HREM to deter-

mine the stable Winterbottom construction. The supported Pd particles were found to be

predominantly multiply twinned particles while Pt particles were predominantly single

crystals.

The effects of sub-nanometer atomic layer deposition of films of titania and alumina

are compared for the acrolein hydrogenation selectivity of Pt catalysts supported on

SrTiO₃. The titania-overcoated catalyst is similar to strong metal-support interaction

catalysts formed by high temperature reduction, with a thin titania film on top of the

supported Pt nanoparticles and an increase in allyl alcohol selectivity, neither of which

are observed for the alumina-overcoated catalyst.

Pt-SrTiO₃ (110) catalyst samples prepared by ALD onto SrTiO₃ dodecahedra are

compared with Pt-TiO₂ catalysts prepared by ALD onto commercially purchased anatase

TiO₂. Catalytic testing of the CO oxidation reaction indicate that the turnover frequency

for SrTiO₃ dodecahedra is significantly higher than anatase TiO₂.

Approved by

Professor Laurence D. Marks

Department of Materials Science and Engineering

Northwestern University, Evanston IL 60208, U.S.A