
Improvement of the MSR1a algorithm in the WIEN2k
code

Theo Guerber

Acknowledgement

First, I would like to acknowledge Xavier Rocquefelte for offering me a very
rewarding internship and for being my tutor during this one.

I would like to express my very great appreciation Laurence Marks for working
with me throughout the internship.

I acknowledge Yvon Lafranche for agreeing to be my reference teacher.

I thank the CTI team of ISCR for hosting me during my internship.

1

Abstract

Researchers working in theoretical chemistry work not with chemical com-
pounds and glassware but with molecular and solid optimization software. These
programs are based on optimization algorithms. The topic for my internship
was to try to improve the algorithm named MSR1 of WIEN2K software used
for density functional theory. The problem is that due to calculations of eigen-
values and of eigenvectors of matrices of considerable size, an iteration of the
algorithm can take from a few minutes to several hours. Thus, the ideal is for
the algorithm to converge but in a reduced number of iterations.
So I first did a bibliography and studied the associated mathematical theory
that I present in chapter 1. Then, I coded a program in MATLAB language in
order to obtain usable data that I present in chapter 2. Finally, I analyzed the
data collected in order to find useful clues for the improvement of the algorithm,
results that allowed an advance and a future upgrade of the software, all this is
presented in chapter 3.

2

Table of Contents

Acknowledgment 3

Abstract 3

1 Internship’s context 4
1.1 ISCR presentation . 4

1.1.1 CTI (Chimie Theorique Inorganique) team 4
1.1.2 WIEN2K problematic . 4

1.2 Density functional Theory . 5
1.2.1 Kohn-Sham equations . 5
1.2.2 Fixed-point theory . 5

1.3 State of the art . 6
1.3.1 Quasi-Newton method . 6
1.3.2 Approximation of matrix Hn in MSR1 algorithm 6

2 Modelling and programming 8
2.1 Modelling of a "WIEN2K mixer" 8

2.1.1 Choice of programming language 8
2.1.2 Recreation of MSR1 algorithm 8
2.1.3 Test functions . 11

2.2 Transformation in a "real" program 12
2.2.1 IHM . 12
2.2.2 Functions . 14
2.2.3 Algorithm . 14

3 Result and futurs researchs 15
3.1 Tests and results . 15

3.1.1 Iteration according to α 15
3.1.2 Eigenvalues/Eigenvectors of Hn 16
3.1.3 Study of eigenvalues/eigenvectors of the other matrices of

the algorithm . 17
3.2 Conclusion of the results and future prospects 17

3.2.1 Contribution of the internship 17
3.2.2 Trust-region control . 18

3

Chapter 1

Internship’s context

1.1 ISCR presentation
The Beaulieu campus brings together a large number of infrastructures dedi-

cated to research. I did my internship in the one dedicated to chemistry: Institut
des sciences chimiques de Rennes (ISCR). ISCR has 280 permanent staff and
several research teams. I worked with the CTI (Chimie Theorique Inorganique)
team.

1.1.1 CTI (Chimie Theorique Inorganique) team
The CTI team works differently from other teams. Where the majority of

other teams use chemistry equipment, the CTI team uses server clusters. This
team uses many softwares often designed by the chemists themselves. These
softwares often have the function of solving chemical equations as for example
the Schrodinger equation. Most of the time, software calculations are staggering,
hence the use of server clusters. The idea behind my involvement with the CTI
team was to try to improve the computational time of the software. The software
to which I have contributed is called WIEN2K.

1.1.2 WIEN2K problematic
Laurence Marks, the researcher I worked with during my internship, has al-

ready made improvements to WIEN2K and has written an article about it. This
article was the core of my internship.WIEN2K is linked to two complementary
algorithms. Laurence Marks’ idea is to perform a linear combination of these
two algorithms. So I worked during my internship on this linear combination
in order to extract information that could make it optimal. But before I start
explaining what I did during my internship, I will first explain the chemical
theory related to WIEN2K and the state of the art of the WIEN2K algorithm.

4

1.2 Density functional Theory
As stated on the website dedicated to the WIEN2k software: WIEN2k allows

to perform electronic structure calculations of solids using density functional
theory (DFT). I will not detail all the DFT here but focus on what concerns
me mainly in the DFT, the Kohn-Sham equations.

1.2.1 Kohn-Sham equations
Kohn-Sham equations are equations of the type Schrodinger equations, that

is equations whose solutions are eigenfunctions and eigenvalues.

HKSΦk = εkΦk (1.1)

Here, HKS is a functional, Φk eigenfunctions and εk eigenvalues. Due to the
nature of the functional, these equations can only be resolved in an iterative
approach. Moreover, since chemists are required to solve this equation in the
case of solids, the resolution of an iteration can take a long time, this adds a
constraint, the algorithm to be optimized must converge but must also converge
in few iterations. Mathematically, this can therefore be summed up as a fixed
point problem on a vector function.

1.2.2 Fixed-point theory
Let us consider a vector function F, that is to say:

F : RN → RN (1.2)

Finding a fixed point of F is like finding x∗ ∈ RN such that :

F (x∗) = x∗ (1.3)

Let’s put G, an other vector function, as:

G : x→ F (x)− x (1.4)

Finding a fixed point of F is like finding a root of G. One method to find
an approximate value of x∗ is Newton’s generalized method at these vector
functions. x∗ becomes the limit of a series (xn) whose recurrence is:

xn+1 = xn − JG(xn)−1.G(xn) (1.5)

where JG is the jacobian matrix of the function G. That is:

JG(xn) = Bn B−1n = Hn ∈MN (R) bi,j =
∂gi
∂xj

(1.6)

In the context of the DFT, the number of unknown, N, of the vector function
could reach values in the order of 104. In this case, calculating the inverse of a
matrix of this size becomes prohibitive at the level of computational costs. An
approximation of the matrix is therefore necessary.

5

1.3 State of the art
The approximation of the matrix and which method to choose to approxi-

mate hold a central place in the article by Laurence Marks. Indeed, the linear
combination I mentioned earlier is a linear combination of two approximations
of this Hn matrix. In the event that the calculation of H is too expensive, the
Newton method is therefore applied with a matrix approximated according to
the previous ones. Newton’s method then becomes a quasi-newton method.

1.3.1 Quasi-Newton method
In a Quasi-Newton’s method, we don’t calculate the matrix Hn, we approxi-

mate it. The idea is a generalization of the secant method for multidimensional
problems.

B̃n.(xn − xn−1) = G(xn)−G(xn−1) (1.7)

where B̃n is the approximation of the Jacobian. There are several methods to
approximate this matrix. The best known methods are:

• Davidon-Fletcher-Powell (DFP)

• Broyden-FLetcher-Goldfarb-Shanno (BFGS)

• Symmetric rank one

• "Good" and "Bad" Broyden

It has been shown in previous work[1] that it is the Broyden methods that are
most suitable in the context of DFT.

1.3.2 Approximation of matrix Hn in MSR1 algorithm
As mentioned earlier, the algorithm in WIEN2K is a linear combination of

the two Broyden algorithms. This algorithm being the core of my internship, we
will detail its functioning in order to fully understand the associated problem.

"Good" and "Bad" Broyden

First of all, we introduce new variables :

yj,n = G(xn)−G(xj) (1.8)
sj,n = xn − xj (1.9)

In his article, Broyden used two methods[2]. The first, referred to "good" Broy-
den’s method is to find an approximation of Bn in respect of Frobenius norm.
So we have[1] :

Bn+1 = Bn +
(yn − σnBnsn)sTn

σn||sn||2
(1.10)

6

where ||s|| =
√
sT s is the Euclidian norm and σn is a step size parameter. We

need a approximation of B−1n so (1.10) become :

B−1n+1 = B−1n +
(σnsn −B−1n yn)sTnB

−1
n

sTnB
−1
n yn

(1.11)

The second method, referred to "bad" Broyden’s has directly an approximation
of Hn = B−1n

Hn+1 = Hn +
(σnsn −Hnyn)yTn

||yn||2
(1.12)

Multi-secant method

The weakness of the Broyden approximations presented above is that they
are based only on the previous step, the idea is therefore to combine them with
multi-secant method in order to make an approximation of Hn no longer with
only the previous step but with several previous steps. The idea of multi-secant
method is precisely to use secant method for multidimensional problem, not
only with one previous step but also many other previous steps[3].

The mixing of methods

Now, we combine the multi-secant method with the Broyden’s method. First
of all, we create matrix of many precedent steps :

Sn = [sn−k,n, sn−k+1,n, · · · , sn−1,n] (1.13)
Yn = [yn−k,n, yn−k+1,n, · · · , yn−1,n] (1.14)

After calculations, we obtain the following approximation of Hn

Hn = σnI + (Sn − σnYn)(Y T
n W)−1WT (1.15)

Whither W is a matrix with same size than Yn or Sn[4].
Thus L. Marks created a new algorithm called MSR1 algorithm, wherein he
used a linear combinaisons of "good" and "bad" Broyden’s algorithms :

W = Yn + αSn α > 0 (1.16)

It must be understood that the range of values proposed by Laurence Marks in
his article was purely conjectural. During my internship, I will try to find an
optimal value of α for many problems as possible or find goods clues about this
value.

7

Chapter 2

Modelling and programming

2.1 Modelling of a "WIEN2K mixer"
I had the idea to create a fictitious model of the algorithm of L. Marks

because I wanted to observe the number of iterations according to the value of
α with test functions found in the literature.

2.1.1 Choice of programming language
The choice of the programming language was made naturally, knowing in

advance that the algorithm would have to manipulate matrices of consequence
sizes, I chose the language created with the aim of manipulating matrices: MAT-
LAB.
Its downside is that it is not opensource like other language but I had a license
on my personal computer during the internship and if it had been necessary, it
was always possible to transpose the work into a free equivalent like Scilab.

2.1.2 Recreation of MSR1 algorithm
Here I will present the algorithm I created based on the work of L. Marks.

In section 1.3.2, I presented the general idea of the MSR1 algorithm, here we
will explain the different parts of the algorithm (initialization, regularization
and pseudo-inversion) whose purpose is to find a root of the following function:

F : RN → RN (2.1)

Initialization

As I said in section 1.3.1, the algorithms of the quasi-Newton methods use
the results of the previous step or steps. But as we see on equations (1.8) and
(1.9), as a difference is made, it is necessary to have at least two points.

8

The test functions I acquired were presented with an initial point x0. In
order not to start in the wrong "direction", the point x1 is calculated as follows:

x1 = x0 − p · F (x0) (2.2)

Where p is a arbitrary value analogous to Pratt step[4]. In my program the p
value was set to: 0.01.

Approximation of JF (xn)−1

We need to find a good value of Hn approximation of JF (xn)−1. In order
to best recreate the MSR1 algorithm, I drew on the algorithm presented in the
two articles by L. Marks.[4][1].
First of all, like in the section 1.3.2, I create new variables

yj,n = F (xn)− F (xj) (2.3)

sj,n = xn − xj (2.4)

and associated matrix :

Sn = [sn−k,n, sn−k+1,n, · · · , sn−1,n] (2.5)
Yn = [yn−k,n, yn−k+1,n, · · · , yn−1,n] (2.6)

Then, I create a regularization matrix Ψn[1]. The use of the regularization ma-
trix helps to avoid creating instability related to the accuracy of the calculations.
In fact, the closer we get to the root the closer the matrix Yn gets to the null
matrix, the regularization gets closer to a normalization of the matrix Yn.

Ψn =


1/||yn−k,n|| 0 · · · 0

0 1/||yn−k+1,n||
. . .

...
...

.
...

0 · · · 0 1/||yn−1,n||

 (2.7)

Finally, I create the following matrices, always based on the work of L. Marks[1]
:

An = ΨnY
T
n (Yn + αSn)Ψn (2.8)

Hn = σnI + (Sn − σnYn)ΨnA
−1
n Ψn(Yn + αSn)T (2.9)

Here, σn is what L. Marks calls algorithm greed in his article[4]. The notion of
algorithm greed is important because as L. Marks says in his article, a major
difference between the "Good" and "Bad" Broyden algorithm is the fact of being
a greedy algorithm or not. A definition of an greedy algorithm given in the article
of L. Marks is as follows:

A greedy algorithm always makes the choice that looks best at the
moment. That is, it makes a locally optimal choice in the hope that
this choice will lead to a globally optimal solution.

9

In order to focus on the linear combination of the two algorithms, it was chosen
to take a constant σn value.

σn = σ = 0.01 (2.10)

Singular value decomposition

As we see in equations (2.8) and (2.9), matrix An must be inverted but that
matrix can be singular(not invertible). So we don’t calculate the inverse but
the pseudo-inverse. Suppose that we need to invert A. First of all, we used a
singular-value decomposition.

A = USV T (2.11)

S is a singular matrix (diagonal matrix with singular values of A). On MATLAB,
I use the command svd to find U,V,S. After that, we create the pseudo-inverse
of S.

s+ij =
sij

s2ij + β
(2.12)

β is a constant added to the denominator to avoid divisions by zero. Finally,
the pseudo-inverse of A, B is created :

B = V S+UT (2.13)

Thus, in my algorithm, the equation to calculate Hn is the following :

Hn = σnI + (Sn − σnYn)ΨnBnΨn(Yn + αSn)T (2.14)

with Bn the pseudo-inverse of An.

Divergence

In some cases, we have a divergence of the algorithm, ||F (xn)|| −→ +∞. So,
if ||F (xn)|| exceeds a certain value, the algorithm is stopped and the number of
iteration is fixed to a arbitrary value.

||F (xn)|| > M Niter(α) = Nitermax ∗ 1.1 (2.15)

Stop criterion

In order not to have an algorithm stuck in an endless loop, I set a stop
criterion related to the number of iterations. thus, if the algorithm exceeds a
number of iterations set by the user, it stops even if the stop criterion linked to
function F is not yet reached.

10

The function-related shutdown criterion is the one that when achieved first
shows the effectiveness of the algorithm. Since the goal of the algorithm is to
reach an F root, we set an ε criterion such that we have:

||F (xn)|| < ε (2.16)

the algorithm stops.

2.1.3 Test functions
In order to represent as accurately as possible the calculations occurring in

WIEN2K software, it was necessary to use test functions whose size was not
fixed in advance and could be chosen by the user. It was also necessary that
the functions found give with the algorithm created exploitable results.

After some research, here are the test functions used in the MATLAB pro-
gram. They come from an article testing different algorithms using quasi-
Newton methods[5]. In short, the role of the test functions is to simulate a
fixed point problem with a large vector function. Thus the functions shown
below are vector functions of which we know the existence of a fixed point.
They were also selected by the researchers to test the robustness and speed of
convergence of algorithms using quasi-Newton methods.

The extended Rosenbrock function

F2i−1(x) = 10(x2i − x22i−1)

F2i(x) = 1− x2i−1
i = 1, · · · , m

2
(2.17)

The extended Powell function

F4i−3(x) = x4i−3 + 10x4i−2

F4i−2(x) =
√

5(x4i−1 − x4i)
F4i−2(x) = (x4i−2 − 2x4i−1)2

F4i(x) =
√

10(x4i−3 − x4i)2

i = 1, · · · , m
4

(2.18)

The Broyden tridiagonal function

Fi(x) = (3− 2xi)xi − xi−1 − 2xi+1 + 1

x0 = xm+1 = 0
i = 1, · · · ,m (2.19)

11

The Broyden banded function

Fi(x) = xi(2 + 5x2i) + 1−
∑
j∈Ji

xj(1 + xj)

Ji = {j : j 6= i,max(1, i−ml) 6 j 6 min(m, i+mu)}
ml = 5,mu = 1

i = 1, · · · ,m (2.20)

The Brown almost-linear function

Fi(x) = xi +
∑

j = 1mxj − (n+ 1) 1 6 i < m

Fm(x) =

 m∏
j=1

xj

− 1
(2.21)

2.2 Transformation in a "real" program
Along with the work of running the algorithm and studying the resulting

data, I had the will to make it a real program with a minimum of human-
machine interface in order to be able to manipulate the algorithm more easily.

Thus, at the end of the course, the program is presented in the form shown
in figure 1 in the appendix.

The program consists of three parts:

• Human-machine interface (IHM in french)

• Functions

• Algorithm

2.2.1 IHM
This part of the program aims to simplify the launch of the program, because

although it is a very simplified version of a part of WIEN2K, it is nevertheless
rather complex. The first dialog box, called "Function Selector" allows the user
to choose which test function he will use (cf figure 2). The choice to put the
function selection before selecting the values of the parameters internal to the
algorithm is that each function does not have the same values for which the
results are useful.For this reason, depending on the function chosen by the user,
the default parameter values that can be chosen by the user are not the same.

As we see in figure 3, the parameters that can be modified are the parameters
that we discussed in the sections above.

12

α:

The choice of the first parameter is particular because it will not set a value
for alpha but create a vector containing all the alpha values between the min
value and the max value chosen with the chosen step between each value. For
each alpha value, we will run the algorithm and retrieve data specific to that
value.

β:

The goal of β is to be able to create a pseudo-inverse as just as possible,
this value represents the compromise between getting as close as possible to the
mathematical limit while avoiding calculation errors due to zero machine

σ:

As explained in section 2.1.2, the sigma parameter is algorithm greed. Al-
though it has been set to 0.01 by default, the user can always change it if desired,
however, the fact that it varies with each iteration has not been implemented
in the program.

"Pratt step" :

As just above, the "Pratt step" is explained in the section 2.1.2. It can of
course also be changed by the user.

Number of variables :

This number refers to N in equation (2.1). In the context of DFT, the order
of magnitude of N is 104 but in order to limit memory requirements and shorten
calculation times, the default value is 200. This value is high enough to allow
through a sufficient number of data as will be seen later.

Iteration maximum :

This parameter allows the algorithm to stop if there is no convergence. I
had to vary its value regularly during my tests during my internship. This will
be detailed in the next chapter but to sum up, by increasing it sufficiently, I was
able to reveal cases of very slow convergence (oscillation before convergence).

ε :

This parameter is the stop criterion of the algorithm. In order to ensure
that we have a convergence and not just an oscillation or a "stroke of luck", we
need to restart a simulation identical to the previous one and diminishing this
parameter.

13

2.2.2 Functions
As can be seen in figure 1, it is in this part that the functions called by the

"function selector" dialog box have been coded. We may notice that not all the
functions mentioned in section 2.1.3 are present, this will be explained in the
next chapter.

2.2.3 Algorithm
It is in this part of the program that the algorithm presented in the section

2.1.2 takes place.

MSR1

This function aims to recover the data chosen by the user, to start a loop on
the different alpha values and in this loop, apply the MSR1 algorithm for the
different alpha values. There were also coded functions finally to extract useful
data. To do all these actions, it uses several functions.

Data : This function will create theXn, Yn and Sn matrices using the previous
points. The previous maximum step used is 8 because it turned out that it was
an optimal value to have conclusive results.

Hcalcul : This function will simply calculate Hn according to Xn,Yn,Sn and
of course α.

eigactive : This function will calculate Shn which will be explained in section
3.1.2.

Eigcomp : The purpose of this function is to count the number of Hn’s eigen-
value possessing a negative real part and that of which the imaginary part is
not zero.

14

Chapter 3

Result and futurs researchs

3.1 Tests and results

3.1.1 Iteration according to α

As I explained in the previous chapter, I created my algorithm so that it will
vary the value of α and performs my pseudo algorithm MSR1 while counting
the number of iterations to converge. So I ended up with graphs of the number
of iterations based on the α.There was no clear correlation between the different
alpha values and the number of iterations needed to converge. Some functions,
however, yielded interesting results.

Rosenbrock function case with 50 variables

As can be seen in figure 4, although no correlation can be traced, it is already
observed that beyond a certain alpha value, non-convergent divergence and os-
cillations appear.As I already explained in section 2.1.2, I coded the algorithm
in such a way that we can distinguish between cases of explosive divergence
and cases of non-convergent oscillation. Thus the points between 10000 and
12000 iterations are false points because the algorithm stopped before having to
calculate values too high for the MATLAB computing capacity. This function
seemed to be a good candidate to study non-convergent oscillation cases.

Gueri-Mancino function with 200 variables

As can be seen in figure 6, the Gheri-Mancino function has the default, if
you can put it that way, of converging for any alpha value. The variation being
so small and the convergences so fast that I didn’t have enough data to be able
to extract information from it. That is why I decided not to use this function
for more advanced tests.

15

Broyden tridiagonal function with 200 variables

In the case of the tridiagonal Broyden function, as can be seen in figure 7,
the number of iterations is more sensitive to changes in the α value. As I will
explain later, this function being one of the functions that best represents the
functions calculated in WIEN2K. As the final idea of the WIEN2K algorithm
enhancement project (of which my internship is a part) is to find α values where
it converts quickly, this function was useful to look for clues between two rapid
convergences but one of which was double the other in number of iteration.

3.1.2 Eigenvalues/Eigenvectors of Hn

After running the algorithm by varying the α value, we get different conver-
gence value depending on the α value. But for specific convergence, for example
the shortest and longest convergence over a given interval, the idea will be to
look at the eigenvalues and eigenvectors of the different matrices making up the
algorithm in order to obtain useful information.

Dispersion of eigenvalues in C

The first information that was extracted from the H matrix’s eigenvalues
was the number of those eigenvalues that were negative and the number of
those eigenvalues that were complex.

After several tests on the functions mentioned above, it turned out that the
presence of a negative value in the eigenvalues of Hn prevented the rapid con-
vergence of the algorithm. This result was not discovered immediately because,
as can be seen in the figure 9, convergence seems more in relation to the number
of complex eigenvalues.

In order to validate the information extracted from the various tests, it
must first be ensured that it is reliable. A good example is the Rosenbrock
function. As can be seen from the figure 10, we can first think that this function
shows a very strong relationship between the number of complex eigenvalues
and convergence. If this is due to a particular aspect of function, then causality
would lose all its meaning. But Rosenbrock’s function, because of its hilly
appearance, makes its roots also minimal.

Ratio of complexes eigenvalues

The complex eigenvalues having the appearance of influencing the conver-
gence of the algorithm, it was necessary to succeed in extracting more informa-
tion from these eigenvalues than only their numbers. In order to see whether
complex values influenced convergence, it was necessary to measure the ratio
between complex part and real part of the eigenvalues whose eigenvectors most
influenced the next step. I have therefore made a sum of the ratio of the eigen-
values weighted by the scalar product between associated eigenvectors and the

16

value of the function in this iteration. In others words :

Shn =

N∑
i=1

|<(λin)

=(λin)
|· < εin|F (xn) > (3.1)

where N is the number of eigenvalues, n the n-th iteration, <(λin) and =(λin) real
and imaginary part of the i-th eigenvalues at the n-th iteration, εin eigenvector
associated with the λin eigenvalues and < ·|· > is the usual dot product. The
idea was therefore to plot each Sn according to the iterations. A figure is then
obtained as figure 11. In blue, ln(Shn) with Shn < 1,in cyan 10∗ ln(Shn) when
Shn > 1. On this figure, a possible correlation appears, showing that there
would be convergence when the complex share lost importance over the next
steps. Unfortunately, as shown in figure 12, this correlation was not verified as
a counter-example was found.

3.1.3 Study of eigenvalues/eigenvectors of the other ma-
trices of the algorithm

The reasons why it is the Hn matrix whose eigenvalues have been studied are
on the one hand that it is the approximation of the inverse of the Jacobian and on
the other because it has as many values as variables of the function, which makes
it possible to have a lot of usable data. As I finish my internship, this line of
research could not be exploited but the main idea was to succeed in extracting
information from the Yn and Sn matrices making up the H matrix because
obtaining their impact on the convergence of the algorithm would eventually
give information about the value that must take α.

3.2 Conclusion of the results and future prospects
The period of the internship being short and the advances in the field of

research take time, so I could not make a revolutionary discovery but I allowed
a breakthrough which is already a very good thing.

3.2.1 Contribution of the internship
My contribution to the improvement of the algorithm

In the end, it turned out that the eigenvalues of Hn which were negative
negatively influence the convergence of the algorithm and that if the eigenvalues
have a complex part it will positively influence the convergence. Laurence Marks
did some testing on WIEN2K software that confirmed this. Thus, I was able
to get at least one useful result that will be implemented in the next version of
WIEN2K.

17

Experience gained

This internship provided me with a lot of enriching and useful experience
for my future professional experiences. First of all, I had a vision of the world
of research that will be a plus if I am asked to do a thesis in the future. Second,
the autonomy I had and the fact that my initiatives were appreciated made me
feel ready for the world of work. Finally, working with an American researcher
allowed me to improve my English, now working in foreign lands is an option
that I am reconsidering.

3.2.2 Trust-region control
The research to improve the Wien2k software is far from complete, there is

still much work to be done. The next line of research is to tighten the trust-
region control. This echoes a line of research that I did not develop during
my internship, research on basins attractors[6][7]. This line of research high-
lights a problem present in the fixed point theory: starting from an initial point
sufficiently close to the solution. But without information on the solution, it
is difficult to know whether the chosen point is sufficiently close to the solu-
tion. In the case of WIEN2K, the idea is to use chemical postulates to ensure
that the initial point is sufficiently close to the solution. But this is not always
enough, moreover, it may be that the initial point is on a border between two
basins of solution attractors, generating instability and oscillations preventing
convergence.

18

Conclusion

It’s hard not to get lost in research. There is still much to discover and
making advances is an arduous task. Despite this, knowing that you have con-
tributed to the advancement of research is a very enjoyable experience.

19

Bibliography

[1] L. D. Marks and D. R. Luke. Robust Mixing for Ab-Initio Quantum Mechan-
ical Calculations. Physical Review B, 78(7), August 2008. arXiv: 0801.3098.

[2] C. G. Broyden. A class of methods for solving nonlinear simultaneous equa-
tions. Mathematics of Computation, 19(92):577–577, January 1965.

[3] M. Bierlaire and F. Crittin. A generalization of secant methods for solving
nonlinear systems of equations. 3rd Swiss Transport Research Conference,
Monte-Verita, Ascona (Switzerland), 2004. P 2003.04.

[4] L. D. Marks. Fixed-Point Optimization of Atoms and Density in DFT.
Journal of Chemical Theory and Computation, 9(6):2786–2800, June 2013.

[5] Jorge J. More, Burton S. Garbow, and Kenneth E. Hillstrom. Testing Un-
constrained Optimization Software. ACM Transactions on Mathematical
Software, 7(1):17–41, March 1981.

[6] Melvin Scott, Beny Neta, and Changbum Chun. Basin attractors for var-
ious methods. Applied Mathematics and Computation, 218(6):2584–2599,
November 2011.

[7] Rajni Sharma and Ashu Bahl. A sixth order transformation method for
finding multiple roots of nonlinear equations and basin attractors for vari-
ous methods. Applied Mathematics and Computation, 269:105–117, October
2015.

20

Appendix

Figure 1: Diagram of MATLAB project

21

Figure 2: Dialog Box "Function Selector"

Figure 3: Dialog Box "Input parameters"

22

Figure 4: Iterations based on α with α ∈ [0, 0.2]

Figure 5: Zoom of figure (4) on α ∈ [0, 0.05]

23

Figure 6: Iterations based on α with α ∈ [0, 3]

Figure 7: Iterations based on α with α ∈ [0, 0.2]

24

Figure 8: The slowest convergence of MSR1 α ∈ [0, 0.2]

Figure 9: Oscillation of MSR1

25

Figure 10: Example of misleading data

Figure 11: Result showing possible correlation

26

Figure 12: Counter example of a possible correlation

27

	Acknowledgment
	Abstract
	Internship's context
	ISCR presentation
	CTI (Chimie Theorique Inorganique) team
	WIEN2K problematic

	Density functional Theory
	Kohn-Sham equations
	Fixed-point theory

	State of the art
	Quasi-Newton method
	Approximation of matrix Hn in MSR1 algorithm

	Modelling and programming
	Modelling of a "WIEN2K mixer"
	Choice of programming language
	Recreation of MSR1 algorithm
	Test functions

	Transformation in a "real" program
	IHM
	Functions
	Algorithm

	Result and futurs researchs
	Tests and results
	Iteration according to
	Eigenvalues/Eigenvectors of Hn
	Study of eigenvalues/eigenvectors of the other matrices of the algorithm

	Conclusion of the results and future prospects
	Contribution of the internship
	Trust-region control

