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ABSTRACT

Structural and Chemical Characterization of Thin Films and Crystal Surfaces
Eric William Landree

In order to correlate surface chemistry with surface structure, an ultrahigh vacuum
(UHV) surface preparation/analysis system (SPEAR) has been attached to an existing UHV
high resolution transmission electron microscope (UHV-H9000). The SPEAR/UHV-
H9000 system combines surface preparation and thin film growth (sputtering ion gun,
heating stage, deposition chamber) with spectroscopic tools such as X-ray photoelectron
spectroscopy and Auger electron spectroscopy, and the surface spatial resolution available
from high-resolution electron microscopy. Results will be shown for room temperature
gold deposited on the (001) orientation of silicon. Shifts observed in the Si 2p and Au 4f
peaks and the Si LVV Auger transition have been correlated with an island-plus-layer

growth mode of gold observed on the surface of silicon.

Surface diffraction data (transmission electron diffraction or grazing incidence X-ray
diffraction) has also proven to be a powerful tool for characterizing the crystallographic
structure of surfaces. However, while surface diffraction data is particularly useful for
refining a given structure model, an initial guess of the surface structure is required.
Techniques such as STM and HREM do offer some insight about the surface structure, but

they too have limitations. A means of directly analyzing surface diffraction data has been
iii
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developed based on classical bulk direct methods for generating a 2D potential (electron
density) map of the surface. The development of this technique for various 2D simulated
data sets will be discussed and its application to experimental data will be shown including

the solution of the TiO,(100)-1%3 reconstruction.

iv
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Charge density map for (a) one atom, (b) two atoms, (c) 4 atoms and (d) 6
atoms in a single 1x3 unit cell are shown. Charge density maps are
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(a) A given charge density map from Direct Methods algorithm and (b) its
corresponding image after cross correlation with single atom (see Figure
6.1a). Peaks are ranked in order of decreasing correlation.

(Top row) Charge density maps of the top three unique solutions for the pm
plane group symmetry. Likely titanium candidate sites found by cross
correlation with a single titanium atorn are marked by (O). (Bottom row)
Corresponding charge density maps calculated by placing a single titanium
atom at the indicated atom sites suggested.

Comparison of the measured (C) and the calculated (O) structure factors for
the (a) microfacet model (Zschack, Cohen and Chung, 1992) and (b) the
model with 4 titanium atoms in the unit cell. Figure 6.4b corresponds to a
R-factor of 0.26.

Bulk atom positions (O) and relaxed surface atom positions (®) for four
titanium and three oxygen atoms within the surface unit cell. Structure is
viewed along the <001> and <100> directions.

Bulk atom positions (O) and relaxed surface atom positions (@) with four
titanium and seven oxygen atoms in the surface unit cell. Structure is
viewed along the <001> and <100> directions.

Octahedral representation of idealized (a) microfacet model (using all relative
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Schematic representation of the grain boundary structure.
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1

INTRODUCTION

1.1 Why surfaces

To appreciate the immediate importance of understanding and characterizing
surfaces and surface related phenomenon, one need only consider any area of
semiconductor or integrated circuit industry. By the year 2012 it is predicted that
Metrology requirements for meeting the Semiconductor Industry Association (SIA)
roadmap goals (Masi, 1998) will require characterization of film thicknesses and line
widths on the order of 5 and 50 nm. Considering that in the coming fiscal year the
merchant semiconductor market is expected to be on the order of 200 billion dollar
(Derbyshire, 1997) and is expected to continue growing, there is little doubt that the
semiconductor industry has a strong interest in being prepared to deal with these future
technological challenges.

For the next generation integrated circuits, new processing techniques are required,
demanding new knowledge in the area of surfaces and surface phenomena. Making light
of itself (but also making an important statement), the recent cover of Advanced Materials
(Korgel and Fitzmaurice, 1998) showed arrays of self-assembling silver nonowires, with

individual line thicknessnes on the order of 70 A (Korgel and Fitzmaurice, 1998)
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superimposed with a miniaturized (70 nm long) computer chip resembling the current
Pentium [I® processor. Recent studies in the area of reconstructed metal surfaces (Tanaka,
Matsumoto, Jujita and Okawa, 1998; Zeppenfeld, Diercks, Tolkes, David and
Krzyzowksi, 1998) have shown the possibility for developing techniques for processing
nano-scale patterns. One technique is describes the use of a thin gold film (~5 monolayers)
deposited on silicon at room temperature as a necessary pre-step for fabricating 15 to 120
nm diameter silicon nanowires (Westwater, Gosain and Usui, 1998). Another study has
also suggested the use of room temperature deposited Au as an interlayer on the Si(001)-
2x1 surface for stabilizing epitaxial Ag films on silicon (Peng, Chen and Chen, 1998).
These brief examples are offered to illustrate the need for expanding basic knowledge in the
area of surfaces and surface related phenomena, not only from a fundamental science
standpoint, but also as a source of new information for possible future processing
techniques.

In parallel with the need to learn more about the basic properties of surfaces, there
is also an equally important need to expand the list of techniques for probing and
characterizing the atomic structure of crystalline surfaces. Again, the SIA roadmap for
metrology requirements has predicted the need for a nondestructive inline surface probe
with capabilities down to 4A resolution by the year 2012. To date there are no known
solutions to meet this technological challenge, requiring new techniques be developed that
are sensitive to the atomic surface structure. Beyond even that, new materials interfaces,
including biological-materials interfaces are expanding the need for new techniques to
probe the two dimensional (and three dimensional) structures of surfaces.

It is with these objectives in mind that the current study, involving both the
chemical and structural characterization of surfaces and the development of a new method

for solving surface crystal structures, is presented.
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Before proceeding further, a brief point about the notation used in surface
crystallography is appropriate. In the surface science literature a *“Ix1” unit is used to
describe a surface in terms of the primitive two-dimensional surface mesh. The 1x1 unit
describes an unreconstructed surface where the atoms occupy their bulk termination
positions. A reconstructed surface is described as a multiplication with respect to this
lattice. For example a 3x1 cell means that the A axis of the surface is three times that of
the 1x1 lattice. The corresponding diffraction pattern will have additional superstructure
spots at 1/3 the spacing between the 1x1 and transmitted spot (in the case of transmission
electron diffraction). To eliminate fractional indexes, the mulitplicative notation is retained
and integer values are used for the surface reciprocal lattice spots along with standard two

dimensional space group to denote symmetry.

1.2 Why Plan-view Transmission Electron Microscopy

Currently there exist many different techniques for probing the atomic structure of
surfaces While scanning tunneling microscopy (STM) and atomic force microscopy
(AFM) have provided a wealth of knowledge about surfaces on the atomic level (Rohrer,
1994), they suffer from an important limitation; they are sensitive to only the outermost
layer of atoms. Scanning tunneling probes have the added limitation of probing not the
atomic positions, but the surface density of states which does not need to reflect the
underlying atomic structure. In addition, it is known that many surface reconstructions
involve relaxation of the top several layers of atoms near the surface extending into the bulk

(LaFemina, 1992; Jayaram et al., 1993).
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Two additional techniques which have been used to obtain surface information are
scanning electron microscopy (SEM) and scanning transmission microscopy (STEM)
(Venables et al., 1987; Milne et al., 1993; Endo and Ino, 1993). One particular advantage
of these techniques is the numerous signals generated during operation, which are capable
of providing a great deal of information. In addition, SEM can provide three dimensional
images which are easily interpretable in terms of surface morphology. However, current
SEM technology is unable to compete with the resolution capabilities of other electron
probe techniques such as high-resolution transmission electron microscopy (HREM) or
STM. Even though STEM provides both surface and bulk information, the deconvolution
of the two is not a straightforward process. Surface information from STEM must be
obtained through a combination of imaging and other low energy electron signals such as
Auger or secondary electrons. Such signals only allow resolutions on the order of
nanometers due to electron scattering within the sample.

Reflection electron microscopy (REM) is another well understood technique which
has been applied to the study of dynamic surface phenomena. However, the resolution of
REM is limited by geometrically induced distortions caused by the grazing incidence of the
electron beam with respect to the surface of the sample, resulting in an image which is
foreshortened by a factor of 50 in the beam direction for flat surfaces (Nielsen and Cowley,
1976; Yagi, 1993).

Emission microscopes form a large group of related imaging techniques
(Mundschau, 1991; Griffith and Engel, 1991). Included in this group are low-energy
electron microscopy (LEEM), mirror electron microscopy (MEM) which is usually just one
imaging mode of LEEM, and photo-electron microscopy (PEEM) which can be one of the
imaging modes of a LEEM instrument (Bauer et al., 1989; Tromp and Reuter, 1993;

Tromp, 1994) or a technique on its own. They all have in common an electric accelerating
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field present at the specimen surface, low energy (100 eV) electrons for a gentle probing of
the surface, and the requirement of relatively flat specimens. A direct imaging technique,
LEEM provides surface sensitivity, large field of view, and high speed of image
acquisition, but lacks atomic resolution. In MEM the electron beam is reflected in front of
the sample, which is the mirror surface. An ultraviolet, or other wavelength, light source is
used in PEEM to eject photoelectrons, otherwise the same specimen geometry and
immersion lens are used. The magnification is often limited by emission current densities.
Profile-view transmission electzon microscopy is another of the techniques
employed in the characterization of surfaces. While it is possible to resolve the columns of
atoms parallel to the electron beam along the surface of interest, these edges need to be on
the order of a hundred angstroms thick in order for high resolution transmission electron
microscopy to be effective. Thus these surfaces are in a thermodynamically unstable
condition and it is questionable as to whether they represent the true surface structure.
Another technique is plan-view transmission electron microscopy. Plan view
differs from profile-view TEM in that it probes the atomic structure perpendicular to the
surface of interest (see Figure 1.1). Large flat terraces are examined which avoids the
concemns present in profile-view TEM. Among the first to use plan-view transmission
electron microscopy as a surface sensitive tool was D. Cherns, whose work in the 1970’s
demonstrated the ability to resolve single atomic steps in a thin Au film (Cherns, 1974).
Using bulk-forbidden reflections in the (111) Au diffraction pattern to form dark-field
images, he was able to resolve contours whose intensity variation matched those predicted
by theory to be single atomic steps. Plan-view HREM (Marks et al., 1992), profile HREM
(Marks, 1983), and transmission electron diffraction (TED) (Takayanagi et al., 1985;
Gibson, 1990; Marks et al., 1993; Jayaram et al., 1993; Jayaram et al., 1995) have been

successfully used as a probe to characterize specific surface reconstructions. The
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advantage of TEM over many other techniques lies in its ability to provide information
about the crystal structure extending into the bulk. TEM is also able to provide both real

and reciprocal space information from the same region.

incident electron beam

Sample

p
e

/

Region of interest:
Plan-view

Region of interest:
Profile-view

Figure 1.1 Schematic of the plan-view versus profile-view imaging.

1.3 Why SPEAR

With the development of plan-view HREM as a powerful research tool for
exploring surface structures, it is natural to apply the technique to material issues such as
thin-film nucleation and growth and surface reconstructions. Typical high resolution
transmission electron microscopes are able to gain structural informationat the atomic scale.

However, HREM is limited by its lack of chemical information. Ideally one would like to
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have the chemical binding information from either X-ray photoelectron spectroscopy (XPS)
or Auger electron spectroscopy (AES) to complement the structural information available
with TEM (Siegbahn et. al., 1967; Briggs and Seah, 1983). It was with this motivation to
combine both structural and chemical information that our research group developed a
surface preparation and analysis system. The Sample Preparation Evaluation Analysis and
Reaction (SPEAR) system combines TEM, XPS, AES, scanning electron microscopy
(SEM), and a duoplasmatron ion gun for surface cleaning. When the chamber was first
installed it included a molecular beam epitaxy (MBE) chamber for the study of nucleation
and growth of gallium arsenide. This chamber has since been replaced with a ion assisted

growth chamber for the study of cubic boron nitride.

1.4 Why Direct Methods of Surface Diffraction Data

One of the most difficult tasks still in solving surface structures is determining some
starting estimate of the atom positions. Numerous techniques exist for refining the atomic
positions once a suitable model is found, but the first step in this case is among the most
challenging.

HREM has been (and still is) one of the most useful tools in examining these
problems, for all of the reasons discussed above. But HREM is not without its limitations
as well. Acquisition of quality HREM images is often a long and tedious task, requiring
highly skilled training not only on the instrument, but in the analysis of any images taken.

By comparison, surface diffraction experiments, either TED or surface grazing
incidence X-ray diffraction (GIXD) are much simpler, requiring often a fraction of the time

(at least in the case of transmission electron microscopy) to acquire information about
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hundreds of reflections. GIXD also provides useful information about the surface structure
by measuring along the surface rel-rods, somewhat slower however due to the inherent
limitation of serial data collection.

In any event, both techniques are capable of providing a tremendous amount of
information about the surface arrangement of atoms. A basic question becomes, once one
has all of this information, how to analyze it. Historically, within the realm of surface
crystal structures, the usefulness of diffraction information has been limited somewhat to
specifics concerning the surface unit mesh dimensions and symmetry in terms of crystal
structure determination. Again, only once a reasonable model is available, based upon
other measurement techniques, does this data become truly useful as a means of refining
surface atom position to remarkably high precision.

However, since the 1950°s (Sayre, 1953) members of the bulk X-ray crystal
structure community have been using this same type of information to restore charge
density maps that describe the entire contents of their unit cell using a technique known as
direct methods. If the structure factors for a given crystal structure, bulk or surface, are

known

F(k) = IF(k)let"*®! (1.1)

where Kk is vector describing a given (h,k,l), IF(k)| are the moduli, and ¢(k) the

corresponding phase, then it is possible to restore the real space density map f(r) by

application of a simple inverse Fourier transform

f(r) = [F(k)exp(—2mir - k)dk (1.2)
k

assuming kinematical scattering from atoms.
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Figure 1.2 Two unrelated pictures (a) and (b), (c) and (d) are the calculated moduli of (a)
and (b) respectively, and image (e) includes the moduli of (a) using the phases of image (b)
and image (f) has the moduli of (b) with the phases of (a).

The problem is diffraction data only provides information about the magnitude of

the structure factors IF(k)l. Direct methods are a class of techniques that exploit the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

inherent relationship between measured moduli to restore the missing phase information
¢(k). Then, using equations (1.1) and (1.2), one is able to restore the real space density
map. For bulk diffraction this provides a three dimensional restoration of the bulk crystal
structure. For the case of surface diffraction data, direct methods provide a projection of
the surface crystal structure normal to the surface within the defined two dimensional unit
cell.

An example of the importance of the phase information is illustrated for two
arbitrary pictures in Figure 1.2 (Escher, 1989; Stoddard, 1894). If we take picture A,
Fourier transform it to reciprocal space and switch its phases with those of another picture,
image B, then inverse Fourier transform it back, we get picture B. An important
observation is that it is the phase information that controls the content of the image. Even if
the moduli in some cases are wrong, as long as the corresponding phase information is
correct, a reasonable restoration of the unit cell contents can be achieved. This is
particularly useful when dealing with surface diffraction data where the errors associated
with the measured reflections are appreciably higher than those associated with bulk
reflections.

For the content of this thesis, discussion concerning direct methods will be limited
to solving the two-dimensional crystal surface structures (1=0). Possibilities (and some of
the successes) concerning the full three-dimensional surface crystal structure problem
where the a-periodic information along the rel-rods (surface truncation rods) normal to the

surface has been partially measured will be saved for the conclusion.
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EXPERIMENTAL APPARATUS

Over the last several decades many different methods have been developed for
probing reconstructions. While scanning tunneling microscopy (STM) and atomic force
microscopy (AFM) have provided a wealth of knowledge about surfaces on the atomic
level (Rohrer, 1994), they suffer from an important limitation; they are sensitive to only the
outermost layer of atoms and it has been suggested that surface reconstructions can involve
relaxation of the top several layers of atoms near the surface extending into the bulk
(LaFemina, 1992; Jayaram et al., 1993). Therefore, to characterize the structure and
chemistry of surface reconstructions, an apparatus is described which combines the
structure determination capabilities of high-resolution transmission electron microscopy
(HREM) and transmission electron diffracion (TED) with the means of preparing and

probing surface chemsitry.

2.1 UHV-H9000 Transmission Electron Microscope

The microscope, a modified version of the Hitachi H-9000 High-resolution
Transmission Electron Microscope (TEM), has remained largely unchanged since it was

first developed as a joint venture between Professor L.D. Marks, Professor P. Stair of the

11
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Chemistry Department at Northwestern University, and the designers at Hitachi
Corporation (Dunn et al., 1991; Bonevich and Marks, 1992). The microscope is a side
entry version of the conventional Hitachi H-9000 High-resolution TEM that has been
modified at the objective region to obtain ultrahigh vacuum conditions. The pumping
system has been slightly modified from the original configuration to achieve a base
operating pressure of less than 1x10'° Torr without disturbing the capabilities of the TEM,
retaining a point-to-point resolution of 2 Angstroms. It also has a Parallel Electron Energy
Loss Spectrometer used for estimating the thickness of samples and bulk chemical

detection.

2.2 SPEAR System
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Figure 2.1 Image of th Hitachi UHV H-9000 Transmission Electron Microscope along
with the SPEAR surface analysis system.
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Figure 2.1 shows the Hitachi UHV H-9000 microscope (Marks et al., 1988; Marks
et al., 1991; Bonevich and Marks, 1992) alongside the SPEAR side chamber system
(Superior Vacuum Technology, Inc., now EPI, MBE Products Group, St. Paul, MN). The
system, shown schematically in Figure 2.2, consists of four separate chambers, each with
an individual task or function. It should also be noted that since this system was first
brought on-line, the MBE chamber (shown in Figures 2.1 and 2.2) was replaced in 1996
with a Boron-Nitride growth chamber for studying the initial nucleation and growth of

Boron-Nitride thin films.
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Figure 2.2 Schematic representation of Hitachi UHV H-9000 Transmission Electron
Microscope and SPEAR surface analysis system.
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2.2.1 Load-Lock Chamber

The load-lock chamber is used for introducing or retrieving samples from SPEAR.
Up to five samples can be exchanged at a time through the load-lock without disturbing the
vacuum conditions inside the rest of the system. Pumped by a 210 I/s turbomolecular pump

(Balzers, Hudson, NH), the load-lock chamber is capable of going from atmospheric

pressure to 1x10" Torr in four to eight hours. Once UHYV is achieved, the load-lock can

then be opened and the sample introduced into the transfer chamber.

2.2.2 Transfer Chamber

The transfer chamber is pumped by a 400 I/s ion pump (Physical Electronics, Eden

Prairie, MN), with a base pressure of 4x10"' Torr. The transfer chamber consists of a
storage module capable of holding up to eight samples and four microscope cartridges, and
a central transfer module used for shuttling samples between the various chambers.
Through this chamber, a given sample may be transferred to any other part of the system or
to the UHV microscope without breaking vacuum. In addition, an evaporation stage
consisting of five different metal sources has been added to supplement the evaporators
already present in the microscope. For future expansion there are three 4.5 inch ports and

one 10 inch port to accommodate additional chambers or extensions.

2.2.3 Analytical Chamber

The dual role of the analytical chamber is to prepare and chemically characterize
surfaces. Samples are cleaned through a combination of sequential ion milling and
annealing. The chemical properties of the specimen surface are then studied through the
use of XPS and AES. The analytical chamber is also fitted with a heating/cooling stage for

temperature control during preparation and analysis.
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Ion milling is accomplished using a duoplasmatron ion source with a microbeam

ion gun column (Physical Electronics). The gun has a variable gas source and can produce

oxygen, argon or xenon ions with a minimum probe size of <5 um. The maximum

accelerating voltage is 10 kV and is operable down to a minimum voltage of 250 V. The
configuration of the sample stage allows the sample to be floated at a positive or negative
DC bias, allowing the ion gun to operate at a more usable accelerating voltage without

inducing undesired damage to the sample surface. The duoplasmatron ion gun produces a

maximum current density of 20 mA/cm’ for a 50 pum beam diameter. Using a Channeltron
(channel electron multiplier) detector and a video imaging system, ion-induced secondary
electron images can be acquired during milling, providing precise control over the location
being milled.

Two different methods of annealing are available in the analytical chamber. The
first is a resistive heating method, that involves heating the sample by passing a DC current

through the sample holder. This resistively heats the molybdenum sample ring to in excess

of 1000°C (for more information concerning the molybdenum sample ring, refer to Section

2.3.2.). However in practice, this approach is limited primarily by poor thermal contact
between the sample and ring. The second method of annealing is through the use of a 1-10

keV electron gun (Kimball Physics Inc., Wilton, NH). Using this technique it is possible

to heat samples up to 2000°C. While this method seems ideal, care must be taken with

samples that are vulnerable to electron beam damage. The specimen stage also includes
liquid nitrogen cooling lines for cooling the sample. This method involves cooling a metal

block that is brought in contact with the sample gripper, and cool the sample by thermal
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conduction. However, in practice this technique is inefficient and at best can reduce the
temperature of the sample a few degrees.

Chemical analysis is accomplished using a spherical capacitance electron energy
analyzer (SCA) (Physical Electronics). It has an energy resolution of 0.1 eV and is capable
of detecting changes in chemical states due to bonding at the surface. The analyzer also has
an electrostatic lens which can define an analysis area of 10 mm x 3 mm down to 70 pm x
70 pm. A dual-anode x-ray souice (Physical Electronics), capable of producing either Al
Ko or Mg Ka x-rays with a maximum output power of 400 Watts per anode, is used for
acquisition of XPS spectra.

The analytical chamber also contains a single-lens electron focusing column with
scanning capabilities (FEI Co., Hillsboro, OR), including an asymmetric electrostatic lens
(Orloff and Swanson, 1979) and a thermal field emitter or “Schottky” emitter (SE) (Tuggle
and Swanson, 1985). When combined with the SCA, AES spectra (Tuggle et al., 1979)
can be acquired with a high spatial resolution. This gun can produce a 15 kV electron beam
with a 50 nm probe size which, in conjunction with the secondary electron detector, has

allowed SEM images at 50,000X magnification.

2.2.4 Growth Chamber

The growth chamber has undergone two different incarnations since it was installed
with the SPEAR system. The original chamber was designed for the molecular beam
epitaxy growth of gallium arsenide (as shown in Figures 2.1 and 2.2). The chamber at that

time was pumped by a 220 I/s ion pump (Physical Electronics) and had a base pressure of

1x10™"" Torr. The chamber had been designed with four effusion cells with room to

expand for additional materials. The sample stage employed the same heating mechanism
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present in the analytical chamber which allowed for resistively heating and biasing of the
sample.

Currently this chamber has been replaced with a different configuration for the
growth of Boron-Nitride thin films (Bengu, 1998). As such, the pumping capabilities and

deposition techniques have been augmented or modified.

2.3 Sample Preparation

Typically the sample preparation, both ex-situ and in-situ, is strongly dependent
upon the material being investigated and as such no two materials have the exact same
sample preparation procedure. This section describes the sample cleaning procedure for
silicon (001) for the observation of the Si(001)-2x1 reconstruction. This same procedure
is used in the investigation of room temperature deposition of Au on the Si(001)-2xI

surface discussed later in Chapter 3.

2.3.1 Ex-Situ Sample Preparation

TEM samples are prepared ex-situ using standard mechanical polishing and
chemical etch techniques (Booker and Stickler, 1962; Xu et al., 1993). Silicon samples are
cut from Si(001) oriented wafer into 3 mm discs. They are then mechanically thinned to
roughly 200 pm thick. At this point they are dimpled until the sample is 20 pm at its
center. The sample is then thoroughly cleaned using a combination of acetone and
methanol to remove any surface contaminants remaining from the grinding or dimpling
process.

The silicon sample is then chemically etched using a solution of 90% HNO, and

10% HF. The ratio of HNO; to HF may be adjusted to either slow or increase the rate of
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etch. The thickness of the sample is roughly monitored using the dependence of the optical
transparency of silicon on thickness (McCaffrey, 1997; McCaffrey, et al., 1996). The
sample is etched until a perforation forms. At this point the sample thickness near the edge
is on the order of hundreds of angstroms, suitable for high resolution transmission electron
microscopy. Chemical etching is a preferred technique for preparing plan-view TEM
samples instead of ion beam thinning to avoid the risk of surface defects and/or ion

implantation that are known to occur.

T—

3 mm

1 N

Figure 2.3 Schematic of molybdenum ring sample holder.

Top View Top (Spring Clip Up)

- Mo Ring ~

Spring
Clip

Sample

Following the chemical etch, before the sample is loaded into the load-lock
chamber, it is inserted into a molybdenum sample holder to facilitate transporting the
sample around the system, shown schematically in Figure 2.3. The sample is then
introduced as-etched into the load-lock chamber. The load-lock chamber is capable of
reaching is base pressure in a few hours, at which time it is possible to safely transfer the
sample the transfer chamber without risking cross-contamination. It is also standard
operating procedure to do a light (60-80°C) bake of the load-lock and the forelines that
attach the load-lock to the differential pumping line of the duoplasmatron ion gun. This is
done to reduce the amount of potential contamination that reaches the ion gun, and thereby

prolong the time between refurbishing the source.
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Figure 2.4. Montage of the Si(111) surface at different stages of ion beam sputtering.
Images were captured using a secondary electron detector while rastering the surface with
the duoplasmatron ion gun. (a) is an image of the surface after 5 minutes using 1.5 keV
oxygen ions; (b) is the same region with lower magnification; (c) shows the same region
after being sputtered with 1.5 keV argon ions inside the first region.

2.3.2 In-Situ Sample Preparation

Once the silicon sample is introduced to the system, the surface is prepared in-situ
using iterative cycles of oxygen and/or argon ion milling and direct electron beam
annealing. Using the Channeltron detector and imaging system to acquire ion-induced
secondary electron images during milling, one may precisely control the region being

sputtered. Figure 2.4a is an ion-induced secondary electron image acquired fora Si(111)
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surface after 5 minutes of milling using 1.5 keV oxygen ions. Figure 2.4b is the sample
with lower magnification. The region that was sputtered is marked by the white square.
The same sample is shown in Figure 2.4c after being milled with 1.5 keV argon ions inside

the first region.
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Figure 2.5 XPS spectra of an (a) as-etched Si(001) sample, (b) after argon milling and
(c) after annealing.
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Flgure 2.6 Off-zonc hlgh-resolutmn image of SI(OOI) 2xl surface taken at 200 kV
7.68 A is two times the 1x1 surface unit mesh and corresponds to the spacing between the
Si dimer rows.

In some cases it is useful to commence cleaning a sample by sputtering the surface
with low energy (less than 1 keV) oxygen ions. This process facilitates the removal of
carbon (forming CO,) and others surface contaminants which strongly react with energetic

oxygen species. Alternatively, the surface is sputtered using low energy (800 eV) argon

ions at angles typically greater than 45° from the surface normal. The process is repeated
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on both sides of the sample and then the silicon sample is heated using the direct electron
beam annealing. The chemical state of the surface is monitored using XPS and AES.
Figure 2.5 is an example of an as etched Si(001) sample surface after introduction into the
system and the sample surface following several cycles of milling and annealing. Once
contamination levels were at or near the detection limit of the instruments, the sample
surface is considered chemically clean and transferred into the microscope in order to
characterize the surface structure.

Once inserted into the microscope, the state of the surface structure is characterized
using a combination of dark field (DF) transmission electron microscopy, off-zone
transmission electron diffraction (TED) and plan view high-resolution transmission electron
microscopy. Samples needed to be sufficiently thin for high resolution TEM and have low
surface defect density. In general, one wants to minimize the surface defect density as
defects are known to play a role in the nucleation and growth of thin films (Venables,
Spiller and Hanbiicken, 1984; Henzler, 1996).

At this stage, one verifies the presence of a native clean reconstruction, which for
the Si(001) orientation correspond to a Si(001)-2x1 surface reconstruction. Figure 2.6 is
an off zone high resolution electron micrograph taken at 200 kV of the Si(001)-2x1 surface
after in-situ sample preparation. The diagonal lines of contrast correspond to the Si(001)
surface dimers along the <110> directions and are spaced 7.68 A apart. This spacing is
two times the surface unit mesh. The boundary line separating the 2x1 and 1x2 domains
across the center of the image corresponds to a single atomic step on the surface. Figure
2.7 is a TED patter of the Si(001)-2x1 surface reconstruction with information from both

domains. The surface structure spots have been arrowed for reference.
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Figure 2.7 (a) TED pattern from the Si(001)-2x1 surface and a (b) high pass filtered
image of the same region showing information out beyond the 800 reflection. Surface 1x1
spots have been marked with black arrows and spots originating from the two different 2x1
surface domains have been marked with white arrows.
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Figure 2.8 (a) TED pattern taken from the Si(001)-2x1 surface after extended irradiation
with Ar ions. (b) shows the same region after high pass filtering to highlight weak
features. Streaks corresponding to tetrahedral stacking faults on the low energy 111 planes
can be seen around the 1x1 and bulk reflections and have been circled for reference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

As mentioned earlier, excessive surface or bulk defects must to be avoided as they
will influence outcome of any surface nucleation or growth studies performed on that
surface. Figure 2.8 is a TED pattern of the silicon sample following “excessive” argon ion
beam thinning and electron beam annealing. Streaks observed around the 1x1 surface unit
mesh and bulk spots correspond to stacking faults nucleated in the thin region as a result of
the sample preparation. Dark-field microscopy showed the presence of tetrahedral stacking
faults in the thin region of the sample. The streaks are a result of the truncated rel-rods in
reciprocal space caused by the faulted (111) type planes intersecting with the Ewald sphere.
Since the sample is slightly tilted, the rods will intersect with Ewald sphere at different
location along the rod, resulting in the asymmetry observed in the streaks for the IxI type
spots around the transmitted beam. For reference this sample was prepared using an argon
ion energy greater than lkeV.

Once a clean, defect free surface is obtained, the surface is suitable for deposition
studies or investigation of the native reconstruction. Surface structure data is recorded as
high resolution TEM micrographs acquired at a series of defoci (through focal series), and
as a series of transmission electron diffraction micrographs acquired from the same surface
for different exposure times (through exposure series), along with dark-field TEM when

appropriate. The chemical state of the surface is monitored using XPS and/or AES.
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ROOM TEMPERATURE Au
DEPOSITION ON Si(001)-2x1

3.1 Background

Starting with the early 1970’s, the gold-silicon interface has been extensively
investigated using various surface techniques to better understand its crystallographic,
chemical, and electronic properties. Despite the AwSi contact being unsuitable for
applications in integrated circuit devices due to the rapid diffusion of Au atoms and their
deep-trap center formation in Si, the study of thin Au films on Si still raises interesting
questions. An area of particular interest is the supposed Au-Si reaction at room temperature
(RT) and the critical gold coverage necessary to induce it, the diffusion of Si through Au
layers even for thick deposits, and related properties such as the origin and structure of
electronic states at the interface.

In spite of the many different surface techniques which have been used to study thin
Au films on Si at RT, due to the difficulty of obtaining a direct correlation between
electronic and morphological properties of the system, there is little agreement over the
exact nature of the interface. A non-exhaustive list of the techniques used, individually or

combined, includes: Low-Energy Electron Diffraction (LEED) (Green and Bauer, 1976;
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Oura, Makino and Hanawa, 1976; Oura and Hanawa, 1979; Okuno, et al., 1980; Green
and Bauer, 1981; Le Lay, 1981; Taleb-Ibrahimi, et al., 1984; Hanbucken, et al., 1985;
Meinel and Katzer, 1992), Auger Electron Spectroscopy (AES) (Oura, Makino and
Hanawa, 1976; Oura and Nanawa, 1979, Okuno, et al., 1980; Le Lay, 1981; Taleb-
Ibrahimi, et al., 1984; Hanbucken, et al., 1985; Thomas and Styris, 1973; Narusawa,
Komiya and Hiraki, 1973; Dallaporta and Cros, 1986; Adamchuk and Shinkin, 1990),
MeV lIon Backscattering, (Nakashima, Iwami and Hiraki, 1975; Narusawa, Kinoshita and
Gibson, 1981; Narusawa, Gibson and Hiraki, 1981; Jin, Ito and Gibson, 1985) Electron
Energy Loss Spectroscopy (EELS) (Okuno, et al., 1980; Le Lay, 1981; Hanbucken, 1985;
Perfetti, et al., 1980; Salvan, Cros, and Derrien, 1980; Mathieu, et al., 1988), X-ray
Photoelectron Spectroscopy (XPS) (Hiraki and Iwami, 1974), Ultraviolet Photoelectron
Spectroscopy (UPS) (Mathieu, et al., 1988; Braicovich, et al., 1979; Hricovini, et al.,
1989; Iwami, et al. 1988; Lu, et al.,, 1990) Photoemission Yield Spectroscopy (Taleb-'
Ibrahimi, et al., 1984), Soft X-ray Photoelectron Spectroscopy (Brillson, et al., 1984),
Scanning Tunneling Microscopy (STM)(Lin and Nogami, 1994), X-ray Standing Wave
(Durbin, et al., 1986), and Transmission Electron Microscopy (TEM) (Le Lay, 1981;
Hanbucken, et al., 1985; Chen and Chen, 1995).

The contradictory results which have been reported may be due to different
experimental conditions such as unknown defect concentration on the reconstructed silicon
surface, the estimation of the Au thickness, assumptions concerning the growth
morphology, and neglect of the Au cluster size effect on the electronic properties and
spectroscopic data.

The structure of the interface, whether it is abrupt or diffuse, and the subsequent
issue of a stable, non-reactive metal interacting with the silicon surface at room

temperature, is an issue of debate. Several models have tried to explain how the Si bond
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breaking occurs, and how a Au-Si compound, intermixed phase, alloy or silicide-like
material is formed. The proposed models include: the “glassy membrane model” (Walser
and Bene, 1976), the “interstitial model” (Dallaporta and Cros, 1986; Salvan, Cros and
Derrien, 1980; Bracovich, et al., 1979; Tu, 1975), the “electrostatic screening model”
(Hiraki, 1984), and the “chemical bonding model” based on charge transfer (Iwami, et al.,
1988).

LEED studies have reported a gradual fading of the surface spots into a high diffuse
background with increasing Au coverage. To our knowledge only one paper identifies a
weak, diffuse ring whose spacing was attributable to neither Si nor Au (Oura and Hanawa,
1979) at 30 A of Au on Si(001). LEED was typically used in conjunction with AES,
which used the Si LVV 92 eV peak splitting, reported to occur at a coverage of one to
several monolayers of Au (Okuno, et al., 1980; Dallaporta and Cros, 1986; Perfetti, et al.,
1980), to constitute “proof” of a silicide (Narusawa, Komiya and Hiraki, 1973;
Nakashima, Iwami and Hiraki, 1975; Hiraki and Iwami, 1974). This explanation of the Si
LVV lineshape modification is still a matter of controversy (Dallaporta and Cros, 1986;
Cros and Muret, 1992).

UPS and EELS studies supported the formation of a silicide at various Au coverage
at the interface or only as a surface thin layer on top of the Au deposit (Okuno, et al., 1980;
Perfetti, et al., 1980; Salvan, Cros and Derrien, 1980; Braicovich, et al., 1979, Iwami,
1988). However, the building of the Fermi energy step at ~0.33 monolayers of Au,
attributed to early alloy formation, can be due to gold clustering (Hricovini, et al., 1989).
Recent HREELS and UPS experiments also indicate the presence of pure Au clusters in the
first few Au-Si layers (Mathieu, et al., 1988), in opposition to STM results (Lin and
Nogami, 1994) which reported a layer-by-layer growth.
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Utilizing the unique capabilities of SPEAR and the UHV-H9000 microscope it is

possible to investigate the initial growth of Au on the Si(001)-2x1 surface at RT using a

combination of high resolution electron microscopy and XPS while maintaining ultrahigh

vacuum (UHV) conditions.

3.2 Sample Preparation
Ex-situ sample preparation consisted of cutting 3 mm disks from p-type Si(001)

wafers of 13.5 -18.5 Q-cm. The specimen surface was then dimpled and polished to

roughly 20 microns at the center. Afterwards it was chemically etched in a solution of 10%
HF, 90% NHO, until the sample perforated. After transferring it to a molybdenum sample
holder, it was introduced into the surface preparation and analysis system (SPEAR)
(Collazo-Davila, et al., 1995).

A detailed description of the in-situ sample preparation procedure is described in
Section 2.3.2. For reference, iterative cycles of 1keV oxygen ions were used to remove
surface contaminants at an angle of roughly 45 to 60 degrees from the surface normal
depending on the physical constraints imposed by the molybdenum sample holder.
Oxygen ion beam milling was followed by 800 eV Argon ion beam milling until oxygen

contamnination was below the detection limit of the analyzer as shown in Figure 2.5. The

sample is then flashed to 800°C and reduced to roughly 450°C. The temperature was

monitored using an optical pyrometer. Final inspection of the sample prior to deposition of

room temperature gold involved examining the XPS spectrum of the surface (shown in

Figure 2.5¢c) and verifying the presence of well-ordered Si(001)-2x1 surface diffraction

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

spots in the TED pattern. Figure 3.1 is a TED pattern taken of the Si(001)-2x1 surface

prior to room temperature gold deposition.

Figure 3.1 (a) Diffraction patter of e SiOOl)-2xl srface and (b) a hih pass filtered
image of the same region. Representative 1X1 spots have been arrowed with black and the
2x1 surface spots have been arrowed with white for reference.
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Samples need to be sufficiently thin for high resolution electron microscopy and
have low surface defect density, monitored using dark field (DF) transmission electron
microscopy, to avoid possible influence on the film growth mode (Venables, Spiller and
Hanbucken, 1984; Henzler, 1996).

It was observed during sample preparation that the electron beam annealing
produced a disordered surface on the incident side of the sample to the electron beam, and
well ordered steps on the exit surface (Grozea, Landree and Marks, 1997). Consequently,
all Au depositions in this study were performed on only the ordered surface.

Au was deposited with the sample at RT using a tungsten thermal evaporation stage
located in the transfer module of SPEAR. The tungsten boats were outgassed prior to
deposition. Au coverage was estimated using the relative Si 2p and Au 4f XPS peak
intensities. After each deposition XPS and AES were performed and transmission electron

diffraction and high resolution electron microscopy images were recorded at 300 kV.

3.2.1 Electron Beam Induced Disordering of the Si(001)-2x1 Surface
The investigation of the surface roughening caused by direct electron beam

Spring clip

Mo ring e-beam

(side A)

(side B)

2. ,
e MM

Figure 3.2 Schematic representation of annealing condition for silicon sample. For later
discussion, “Side A” refers to the side of the sample with the incident electron beam and
“Side B” is used to correspond to the exit surface.
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annealing was done in collaboration with D. Grozea. Annealing of the Si(001)-2x1 was

performed with the Kimball Physics electron gun located at the analytical chamber of
SPEAR using 3 keV electrons and a beam current of 0.1 mA. Surface chemistry was
monitored using XPS, and off-zone electron diffraction (TED) and dark field (DF) were
acquired using a beam voltage of 200 kV to limit the beam interaction with the surface
during investigation. Figure 3.2 is a schematic of the annealing condition for a given
silicon sample. Hereafter, “side A” will refer to the side of the sample the electron beam is
incident upon, and “side B” the opposite surface.

Figure 3.3a is a DF image taken of a Si(001) surface imaged with a (220) type
reflection showing well ordered steps. It is important to mention that for this investigation,
samples with a large number of bulk defects were used to facilitate finding the same region
between steps of disordering the surface. Lines of contrast running diagonal along the
image correspond to atomic surface steps on the surface. An important observation is the
absence of any overlapping steps observed in Figures 3.3a and 3.4a. This indicates that
the presence of well ordered surface steps on only one side of the specimen, despite
indications from XPS that both sides have contamination levels at or below the detection

limit of the analyzer.
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Figure 3.3 Dark field image of the Si(001)-2x1 surface using the Si(220) beam (a) before
and (b) after irradiating the sample on “side A” with 600 eV Argon ions for 5 seconds at
50° from the surface normal. Surface steps are still observable in both images.
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Figure 3.4 Dark field image of the Si(001)-2x1 surface (a) before and (b) after irradiating
the sample on “side B” with 600 eV Argon ions for 5 seconds at 50° from the surface
normal.” Surface steps can no longer be seen in (b).
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Since the inelastic mean free path for 3 keV electrons in silicon is on the order of 50
A (Tanuma, Powel and Penn, 1991; Fujita, Schleberger and Tougaard, 1996), and our
specimens are typically greater than 200 A thick, it is inferred that the surface disordering is
a result an interaction between the electron beam and the incident surface. To test this

theory, both sides of the sample were disordered using 600 eV Argon ions for 5 seconds at

50° from the surface normal followed by subsequent DF images taken of the surface to

determine the presence or absence of the surface steps.

Figure 3.3 is a set of DF images taken of the same region of the sample before and
after the “side A” of the sample was disordered using Argon ions. Note the surface steps
are still visible in both DF images. Figure 3.4 corresponds to a region of the sample before
and after “side B” of the sample was disordered. The absence of surface steps in Figure
3.4b indicate the surface step ordering is indeed occurring on “side B” of the sample.

This is consistent with what one would expect based upon previous investigations
of the effect of surface step migration on the Si(001)-2x1 surface as a function of applied
current (Kahata and Yagi, 1989; Ichikawa and Doi, 1990). For our geometry, electrons
reaching the incident surface (side A) will take a random walk path from the point of
contact to the grounded Mo ring. Consequently, well-ordered surface steps are absent
from the incident surface. While on “side B”, the heat generated as a function of electron
beam annealing, and the absence of stray surface currents, allow for ordering of surface

steps to occur.
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Figure 3.5 Dark Field image from the Si(001)-2x1 surface using the Sl(220) beam (a)
prior to deposition, showing ordered surface steps, and (b) after deposition of 8 A of Au
on “side B”, surface steps are no longer present.

Confirmation of the presence of well-ordered surface steps on only “side B” took
place throughout the room temperature Au deposition experiment. It was observed that

surface steps present on “side B” disappeared upon deposition of Au. Figure 3.5 is a DF
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image taken of the Si(001)-2x1 surface before and after deposition of 8 A of Au and is

attributed to a disordering of the surface steps induced by the presence of Au.

Figure 3.6 TED patter from the Si(001) surface following 2 A of Au deposition.
Indications of oriented growth can already be observed as bright regions along the ring
coincident with the Au(111) spacing, which have been arrowed for reference.
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Figure 3.7 High-resolution image of the Si(001) surface following 2 A Au deposition.
(a) and (b) are unfiltered images of surface regions showing oriented growth. Fringes
coincident with Au(111) spacing have been circled for reference. (c) and (d) are the same
regions after Fourier filtering to remove spacings smaller than 2.34 A.
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Figure 3.8 High-resolution image of the Si(001)-2x1 surface after 13 A of Au
deposition.
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Figure 3.9 (a) TED patter from the Si(001) surface after 13 A Au deposition showing a
Au(110)//Si(001) epitaxy on the two different Si(001)-2x1 domains. Rings coincident
with the Au(111) and Au(220) have been arrowed for reference. (b) Schematic
representation of Figure (3.9a). The two different surface domains are separated by a 90°
rotation and have been labeled (@) and (®) for reference.
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3.3 Results

3.3.1 Transmission Electron Microscopy
At low coverage a diffuse ring appears coincident with the Au(l11) spacing.
Figure 3.6 is a diffraction pattern taken after roughly 2 A of Au deposition. Diffuse spots

along the ring indicate that oriented growth is present at the initial stage of deposition.

Figure 3.10 A longer exposure time TED pattern from the Si(001) surface after 13 A Au
deposition. The Si(001)-2x1 surface superstructure spots been arrowed for reference.
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Figure 3.7 is an image of the surface at the same coverage.
At higher coverage, TEM micrographs show the presence of multiply twinned and
single crystal small particles nucleating on the surface, Figure 3.8. This is similar to

observations of RT growth and nucleation of Ag on Si(001)-2x1 (Doraiswamy, Jayaram

Figure 3.11 A TED pattern from the Si(001) surface after 8A of Au deposition after
storing the sample under 1x107'° Torr for 172 hours. Si(001)-2x1 spots are still present
and have been arrowed for reference.
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and Marks, 1995). Figure 3.9a is an off-zone TED pattern of the sample at the same
coverage. The rings are coincident with the Au(111) and Au(200) spacing. The bright
spots along the rings indicate a Au(110)/Si(001) epitaxy, shown schematically in Figure
3.9b. At no point did there appear any unidentifiable features to support the formation of a
structured gold-silicide.

Figure 3.10 is a TED pattern taken at a longer exposure time from the same region

as Figure 3.9a. Intensity along the entire Au rings indicates the presence of small domain

polycrystalline gold. Another notable feature is the presence of Si(001)-2x1 spots at 13 A

of Au. This is contradictory to results from previous LEED studies which conclude that the

2x1 superstructure and 1x1 spots disappear for lower gold coverage (Oura and Hanawa,

1979; Green and Bauer, 1981; Teleb-Ibrahimi, 1984; Hanbucken, 1985; Lu, et al., 1990).

More than 172 hours after the initial deposition, Si(001)-2x1 superstructure spots are still

evident in the TED pattern, Figure 3.11. XPS measurements detected silicon oxide and no

gold on the native, undeposited silicon surface. The destructive effect of water vapor on

the Si(001)-2x1 reconstruction (Boland, 1990) and the presence of oxygen indicated the
2x1 periodicity must exist at the interface between the Au overlayer and the Si substrate.

Consequently the 2x1 structure is preserved underneath the gold overlayer on the Au

deposited side of the sample (Stierle, Muhge, and Zabel, 1994).
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Figure 3.12 Relative shifts of the (a) Si 2p and (b) Au 4f,, peaks as a function of
gold coverage. Si(001)a-d are four different samples studied including calibration
offset. Absolute peak positions are calibrated for each sample by comparing the Si 2p
peak prior to deposition.
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3.3.2 X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy

Shifts in the binding energies of the Au 4f and the Si 2p peaks have been observed
during Au deposition. Figure 3.12 is a plot of the shifts in the relative binding energies of
the Au 4f,, and Si 2p peaks as a function of gold coverage. Results show a sudden
increase in the Au 4f binding energy with the first few angstroms of Au deposition. With
additional deposition, beyond roughly 2 A, the binding energy gradually decreases, tending
toward bulk values as the coverage increases. The Si 2p peak illustrates the opposite trend,
showing a shift to lower binding energies followed by a return to the bulk Si binding
energy as the Au coverage is increased. Our results are consistent with previous studies
which suggested the peak shifts indicate an interaction at the Au-Si interface and the
presence of a chemical reaction owing to the formation of a gold-silicide (Hiraki and
Iwami, 1974; Braicovich, et al., 1979). These results are also consistent with the recent
studies by Vijayakrishnan and Rao which show that a similar trend is also found in metal
deposition studies on various substrates (Vijayakrishnan and Rao, 1991; Rao, 1993).

AES spectra acquired at different stages of deposition show the characteristic
appearance of a split in the Si LVV Auger transition which has been used to indicate the
formation of a gold-silicide. Figure 3.13 is a montage of AES spectra taken at different
stages of deposition. The corresponding TED pattern and high resolution electron
microscopy image for a Au coverage of 13 A, Figure 3.8 and Figure 3.9a, show no
evidence of a structured gold silicide which could contribute to the splitting in the AES
spectrum. This indicates an upper limit of less than 0.1 monolayers of silicide; more than

this amount would have been detectable by transmission electron microscopy techniques.
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The Au Auger line also appears to shift to higher kinetic energies with increasing

gold particle size on the surface and is consistent with a study by Oberli et al. (1981) which

examines the AES spectra for small gold particles on amorphous carbon.
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Figure 3.13 AES spectra acquired for 0 A, 2Aand 13 A of Au deposited on the (001)
orientation of silicon.
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3.4 Discussion

All of our spectroscopic chemical data are consistent with earlier resuits presented in
the literature. However, the growth mode for the system is not what was previously
assumed (Okuno, et al., 1980; Dallaporta ad Cros, 1986; Lin and Nogami, 1994). From
microscopy images and electron diffraction information, we have directly observed
evidence for Stranski-Krastanov growth mode, layer-plus-island, not layer-by-layer. At
low coverage, a diffuse ring coincident with the Au(111) spacing in the diffraction pattern
indicates the existence of an disordered layer. Diffuse spots along the ring verify the
presence of islands from the early stages of deposition. Multiply twinned and single crystal
small particles are evident from micrographs of the surface at 13 A gold coverage.

The disappearance of the surface steps from the initial stages of deposition suggests
that Au disorders the surface. This along with the mottled background observed in the low
coverage HREM images would suggest the possible formation of a disordered 2D Si-Au
glassy layer. This is consistent with previous studies which have observed the formation
of this glassy layer (Hiraki, et al., 1975; Robison, Sharama and Eyring, 1991), which can
be attributed to the high entropy of mixing in the Au-Si system (Cros and Muret, 1992).
The sudden shifts in the Au and Si binding energies at the early stages of deposition, up to
roughly 2 A, also coincide with the formation of the Au-Si glassy phase on the surface.

Results from Vijayakrishnan and Rao (Vijayakrishnan and Rao, 1991; Rao, 1993)
showed that the size of small metal clusters on various substrates influenced the relative
binding energy of the metal. Their model suggests this is due to the inability of small
particles to shield the core-hole created during photoemission, resulting in an increase in the
relative binding energy with decreasing particle size. Conversely, in bulk metals or large
particles the core-hole created is screened by the surrounding valance electrons. Therefore,

increasing particle size or increasing coverage results in a decreasing relative binding
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energy to that of the bulk value. Regardless of the validity of this particular model, one can
attribute the shifts seen in the Au on Si XPS spectroscopic data to the growth of small
particles observed on the surface during deposition.

From the images and diffraction data, the silicon atoms at the surface appear to sit in
two different environments. In one environment the silicon atoms sit below the particles.
In the other the atoms are underneath an amorphous or disordered layer that exists between
the particles. It is therefore reasonable that the silicon in these different environments
contributes to the peak splitting of the Si LVV transition observed in the Auger spectrum.
At this point we cannot comment on the presence of a structured silicide which may exist in
quantities substantially less than a monolayer after room temperature deposition. However,
electron microscopy images and transmission electron diffraction information show there is
insufficient silicide present to explain the recorded shifts in the XPS spectra and the Si peak
splitting observed in the AES spectra.

Studies of bulk Au and Si mixtures as well as thick films of Au on Si have
produced metastable gold silicide phases (Anderson, et al., 1971; Gaigher and Van Der
Berg, 1980; Dhere and Loural, 1981; Kato, 1989). Similarly, studies of gold thin films on
silicon have also reported evidence of silicides after annealing at or above the Au-Si eutectic
temperature (Green and Bauer, 1976; Oura and Hanawa, 1979; Lu and Sham, 1993: Lin, et
al., 1993; Jayaram and Marks, 1995). There is however no structural evidence for the
presence of a gold silicide following room temperature deposition.

This study illustrates the difficulty in using spectroscopic data alone to conclusively
indicate the presence of a change in chemical state since it has been shown that the surface

growth morphology can influence relative shifts in the XPS spectra and AES spectra.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4

DIRECT METHODS SOLUTIONS
OF SURFACE DIFFRACTION
DATA

As was mentioned in the introduction, direct methods have been around for more
than on 50 years. It is not the intention of this Chapter to restate 50 years of knowledge.
Rather, the focus of this chapter will be to outline the basic idea of direct methods, discuss
issues that are important when dealing with surface diffraction data, and to offer a different
(but completely consistent) description of direct methods using the more mathematically
rigorous context of projection onto sets.

Direct Methods is a term used to describe a class of techniques for determining
crystal structures that find estimates of the phase values ab initio from the magnitude of
experimentally measured structure factors. Using the estimated phase values, a
representative charge density map (in the case of X-ray scattering; potential map for
electron diffraction) is restored which fully describes the contents of the unit cell. This
method is possible by virtue of the Fourier relationship between the structure factors F(k)
(magnitude and phase) and the real space density maps f(r) which show atom positions.

Using equations (1.1) and (1.2) one can write the equation

49
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f(r) = [|F(k)le'®®exp(-2nir - k)dk @.1)
k

where r and k represent any generalized vector (x,y,z) in real space and (hk,]) in
reciprocal space. Kinematical diffraction techniques are capable of measuring the

magnitude of the crystal structure factors [F(k)l, and it is the goal of direct methods to

determine the phase component ¢(k), to restore a real space map of the atomic structure

f(r).

By comparison “indirect methods” may be used to refer to any other supplementary
technique (STM, chemical bonding, etc...) used for assigning atomic position, and then
comparing the calculated magnitudes of the structure factors with those of the

experimentally measured magnitudes.

4.1 Background

One of the first advantages of applying direct methods to surface diffraction data is
that it becomes possible to include both electron diffraction data as well as X-ray diffraction
data. The statistical relationships that allows one to assign phase between the various
reflections are based upon kinematical scattering between atoms. For this reason, some
surface diffraction techniques which are strongly dynamical, such as LEED and RHEED,
may not be used to restore surface potential maps via direct methods. Fortunately,
previous investigation have shown that transmission electron diffraction from surfaces is
nearly kinematical, with systematic errors due to dynamical effects (Tanishiro and
Takayanagi, 1989; Marks, 1991) smaller than those associated with the phase
reconstruction. Consequently it is possible to handle surface gazing X-ray diffraction data

and plan-view TED data identically after correcting the scattering factors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

However, there are some limitations one must consider for the application of direct
methods to surface diffraction data. Surface diffraction data differs substantially from bulk
data, not only in the much higher noise levels but because the data sets are often
incomplete, missing critical reflections. The surface intensities may span 2-3 orders of
magnitude, with errors of 5-10% in the strongest beams ranging to 100% or more in the
weaker ones. In an ideal case, with reflections measured out to infinity and no missing
information, one would be able to restore a density map with no negative regions or

artifacts. However, with intensities measured out to finite spatial frequencies and a certain

percentage of the beams coincident with either the surface 1x1 reflections or the bulk

reflections, actual maps will contain artifacts and negative regions depending on the amount
of missing information.

Another reason it is more difficult to solve structures in two dimensions as opposed
to three dimensions is because chemical arguments such as interatomic spacings which can
be used to constraint the solution are no longer valid in projection. Furthermore, three
dimensional data sets contain in general many more reflections, which provide a large body
of data from which to restore a map of the unit cell contents, compared to two dimensional
surface diffraction data sets. In addition more reflections means stronger probabilistic
relationships for the predicted phase of each reflection. Therefore, in order to solve surface
structures using direct methods, one desires a sufficient number of accurate reflections to
restore a potential/charge density map showing roughly 90% of the atoms to within a
fraction of an Angstrom of their true atomic positions. From this, using additional
structure completion methods and minimization techniques, it is possible to realistically

solve surface structures.
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4.1.1 Principles and Background

4.1.1.1 Sayre Equation

Consider a set of structure factors in reciprocal space F(k), where k corresponds to
a reciprocal lattice vector. The standard Sayre equation states that for non-overlapping
identical atoms

F(k) = c(k)2 F(k — h)F(h) 4.2)
h

where c(k) is a known function. The statistical phase relationship between reflections
described in equation (4.2) is based upon the fact that kinematical scattering occurs from
non-overlapping atoms and allows one to express the sign relationship of the phases for the

different structure factors as
s(k) = s(k-h) s(h) (4.3)

where s(k) corresponds to the sign of the structure factor, either +1 or -1 (Sayre, 1952;
Woolfson and Fan, 1995). This phase relationship was then extended by Cochran (1955;

Woolfson and Fan, 1995) to more general non-centrosymmetric structures such that

¢(k) = ¢(k-h) + ¢(h) (4.4)
where ‘=* refers to the fact that this is a probability related definition, i.e. the stronger the

moduli, the stronger the phase relationship. Equation (4.2) can also be rewritten using
unitary structure factors where

U(k) = F(k)/<f>'"? (4.5)
and < f* >'” is the expectation value of the sum of the different scattering factors for all of

the atoms in the unit cell which then gives
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U(k) = Y U(k - h)U(h). (4.6)
h

Reducing the equation to unitary structure factors reduces the real space map to a series of
delta functions located at the atom positions within the unit cell.

Given some initial set of phases, either equations (4.2) or (4.6) can be used to
generate additional phases via the Tangent Formula (Karle & Hauptman, 1956). These
new phases are then fed back in an iterative fashion and the validity of the phases at each
cycle is determined by evaluating the self-consistency of each structure factor, i.e. how
much their values change with each iteration. It is this self-consistency of the phases that
provides us with a figure of merit to evaluate “good” solutions. This will be discussed in

more detail in Section 4.1.3. This method of successive approximation can be written as

Un+1(K) =3 U (k-h)U, (h) 4.7)
h

where U, (K) contains the ‘m’th iteration phase estimate. The process is terminated once
the phases for all of the measured moduli have been restored, producing an “image” of the
contents of the unit cell by applying an inverse Fourier transform to the measured moduli

and calculated phases.

4.1.2 Minimum Relative Entropy
There are many possible expressions besides the Tangent formula that may be used

to relate the inherent phase relationship between reflections. Another example would be

Ums1(K) = S5 U (k= h= DU (WU, (1) (4.8)
hl

which uses positive quartet values (Schenk, 1973; Woolfson and Fan, 1995).
Historically this type of analysis has been limited strictly to reciprocal space,

primarily due to limits in computing power. However, the same equations may easily be
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[u(r)]?

u(r)

Figure 4.1 Shown is an arbitrary one dimensional function u(r) and the corresponding
function after being operated upon by the sharpening operation O (u(r)) = [u(r)]>. Note
that peaks present in u(r) are shaper and more distinct as a result of the applied operation.
expressed in real space using fast Fourier Transforms, i.e. u(r)=FT'(U(k)). u(r) is a
function that describes a real image which possesses “peaks™ or regions of strong intensity
at atom positions within the unit cell. A generalized form of equations (4.6)-(4.8)

expressed in real space is
Upy (1) = O(u(r)) (4.9)
where O is some “sharpening operator” operating on a given real space (potential/charge)
density map u,(r) that describes the contents of the unit cell. Note that
U (F) = OUR(P)) = [up ()] (4.10)
is the same as equation (4.7). The idea of O resembling a sharpening operation stems from

the fact that bright features in the real space map u(r) become stronger and weak ones

diminish as a result of this operation, shown for a one dimensional example in Figure 4.1.
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Various other sharpening operators were investigated including u_(r)* (related to
equation (4.8)) and u_(r)lu_(r)l, in search of the ideal operator and most robust in terms of
handling surface diffraction data. To some extent, by trial and error it was realized that an
operator of the form u(r)In[u(r)] proved to be the best sharpen operator (Marks and
Landree, 1998; also see Chapter 5). Not surprisingly, this has obvious relations to

information theory in that one can consider

S¢(r) = u(r)Infu(r)y/e(u(r))] u(r)>0 @.11)
S;(r)=0 u(r)<0

where S (r) is the “relative entropy™ as a function of the real space vector r (Kullback and

Leibler 1951; Cover and Thomas, 1991). As such, it is possible to define a sharpening

operator of the form

U (Olnfug, (0/(un ()] vy (@) >0

=0 = 4.12
Ut (F) = Oty (1) {0 o (4.12)

Equation (4.12), which minimizes the relative entropy, is also very similar to Maximum
Entropy methods (Cover and Thomas, 1991). One of the primary differences between
Maximum Entropy methods and using the minimum relative entropy approach is that

Maximum Entropy finds solutions whose density map contains the most information

(maximizes the entropy) and is still consistent with the measured reflections using a X’ type

comparison (see Bricogne, 1984; Bricogne and Gilmore, 1990; Gilmore, Bricogne and
Bannister, 1990 for further details). In the minimum relative entropy approach described
in equation (4.12) we are using the relative entropy as a sharpening operator to find the
solutions with the lowest relative entropy that is also the most self-consistent in terms of the

measured moduli and calculated phases.
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Once the new estimate u,,,(r) is Fourier transformed back to reciprocal space and
the figure of merit of the current calculated moduli and phases is evaluated, the calculated
moduli are then updated with the experimentally measured moduli. The same process is
iterated again until phases have been calculated for all of the measured reflection and the
figure of merit no longer continues to decrease. The exact method used to update the
current estimate with the measured moduli will be explained in more detail in section 4.2.

To compensate for the fact that reflections are not measured out to infinity, a
“window function” W(k) (e.g. Press, Teukolsky, Vetterling and Flannery, 1992) is chosen
to satisfy for any sharpening operator

w(r) = ot O(w(r)) (4.13)

where o is some constant, yielding windowed unitaries U'(u) given by

U'k) = W(k)U(k) (4.14)
The process of multiplying by the window function in reciprocal space has the added effect
of enforcing a spherical shape to density features in the real space maps, i.e. eliminating
what would otherwise be streaks or other non-atom like features. Hereafter only

windowed unitaries are used and the prime superscript is dropped.

4.1.3 Figure of Merit

After each iteration of the phase restoration algorithm (be it the Sayre-based Tangent
formula or the minimum relative entropy approach), a figure of merit (FOM) is calculated to
measure the “correctness” of the calculated set of phases and moduli. A solution that is
self-consistent, i.e. the moduli and phases for each reflection match the measured moduli
and satisfy the known phase relationships, is a potentially “correct” solution. However,

due to the relatively large errors associated with measured surface diffraction intensities, it
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is problematic to formulate absolute FOM. Put differently, a low FOM is a necessary
condition for the correct solution, but the correct solutions may not necessarily have the
lowest FOM. Improvements in how to account for the unmeasured reflections (Marks,
Sinkler and Landree, 1998) have come a long way toward improving the accuracy of our
FOM, such that in most cases the correct solution is the solution with the lowest FOM.
Nonetheless, the ultimate usefulness of any FOM is dependent on the accuracy of the
measured intensities, which for higher order surface spots can have associated errors that
are several times larger than the actual measured intensity.

As mentioned above, the FOM used is based upon the consistency for each of the
unitary structure factor (moduli and phase) for a given iteration of the phase restoration
algorithm:

z’ Um(k) - BUm+l(k)|Y

2|Un k)"

FOM = 4.15)

where X' refers to a summation which includes all terms except the k=0 term and B chosen

such that it minimizes the FOM;

U (k) is the (measured) amplitude and (calculated) phase of the structure factor at
the beginning of each cycle for diffraction spot k; U_, (k) is the calculated amplitude and
new calculated phase calculated at the end of the cycle;

It should be mentioned that the more conventional form of the FOM which uses

only the moduli (Woolfson and Fan, 1995), did not perform as well as equation (4.15). In

addition, Y= 1, which is more accommodating of experimental and numerical errors, also

performed better than the more conventional ¥ = 2 (resembling a least square analysis).
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Details of the analysis of the different forms of the FOM and the ability of the different

sharpening operators will be discussed in Chapter 5.

4.2 Description of Direct Methods using Projection onto Sets

The intention of this section is to explain how the crystallographic phase problem
may be expressed in a form more familiar to image recovery, multiple projection onto sets
theory. This section is not intended to be strictly for mathematicians, rather recasting the
problem in a mathematically more rigorous sense increases the possibility of applying well
developed mathematical tools, as well as exploiting techniques already present in image
recovery literature.

For those wishing a more detailed explanation of projection onto sets, a useful
overview is provided by Sezan (Sezan, 1992), H. Stark (Stark, 1987), and in a review
article by Combettes (1996). A more detailed explanation of the application of projections
on sets to the phase problem, is available in Marks, Sinkler and Landree (1998) and Marks

(1998).

4.2.1 Definition of Terms

For simplicity within this section a generalized function X (uppercase) will be used
to represent the structure factors in reciprocal space (unitary or normalized) and x
(lowercase) for the corresponding real space density map. At this point it will be useful to
define the terms used later in the description of direct methods.

X (or x) which have certain properties belonging to some set, S, may be written as

XeS (4.16)
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The properties of a given set are typically associated with some known constraint about the
solution.

Once can define the magnitude or norm of any vector X as

2
X = {in * Xi} (4.17)
!

where the sum is taken over the members (k in reciprocal space and r in real space) and the
distance between two vectors X and Y can be defined as

d(X,Y) = IX-YII. (4.18)

For any two members X and Y of a given set, the set is defined as “convex” if a

third point Z is also a member where
Z=AX+(I-M)Y; O<Ai<l1 4.19)
i.e. all points lying on a line connecting X and Y would belong to the set. Similarly, a set
whose members do not satisfy equation (4.19) would be a “non-convex” set.
A “functional” is defined as a function of either X or x (as appropriate) which gives
areal valued. Itis also possible to define a set specified by some functional g(X), i.e. the
region

gX)<pB (4.20)
with B a scalar. Using equation (4.19), a functional is convex if
EAX+(I-M<sAgX)+(1-M)g(Y); O<A<l. 4.21)

Next is to introduce the idea of an “operator” @ which acts on X to give some new point,

i.e.

oxX)=2Z (4.22)
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where Z is a modified structure factor. Similarly, O(x) will give a modified density map.
Note this definition is identical to the one described in equation (4.9). There also exists a
set of eigenvectors of O, known as the fixed points (Fix O) such that 0(X)=X.

Next, it is important to introduce the ideas of expansive, non-expansive and
contractive operators. If an operator is expansive, then each operation takes one further
from the desired set of eigenvalues (fixed points). For a simple iterative method, such as

the one described above, this is undesirable.

An operator is non-expansive if
1O(X) - O(Y)Il < IX-YII (4.23)
and contractive if
I0X)- O <k X-YII  O<k<]l. (4.24)
In the context of direct methods, one desires an operator that is at worst non-expansive,
and locally contractive around the set of fixed points. In this case, the set of fixed points

may be a non-convex and discontinuous set. The importance of non-expansivity is

demonstrated in the case where
Y = 0(X) (4.25)
such that

NOX) - OO < 1| X-OX)I. (4.26)

Therefore, for a non-expansive operator 0, O(X) is closer (or at least no further away)

from a set of fixed point with each iteration.
To define a “projection”, consider some set S, and some point X which is not a
member of the set. Let Y be the point on S such that IIX-Yll is minimized, illustrated in

Figure 4.2. The projection of X onto the set S, written as P(X), is equivalent to:
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PX)=Y. 4.27)

Also, the concept of a “mapping” needs to introduced. A Fourier Transformation

FT, which converts an element from real space to reciprocal space, is a mapping from x to
X. A mapping doesn’t change the values of the members, i.e. FT(FT'(X))=X, it simply

converts it one from to another.

P(X)

X

Figure 4.2 Schematic diagram shown for some member X projected onto the set S,
resulting in a new member Y that is consistent with the constraints used to establish set S.
In terms of trying to find the solution for two convex sets, S, and S,, where each
set is defined by some known constraint about the solution, there can be three possible
outcomes, shown in Figure 4.3. The solution we desire is one that satisfies all of the
known constrains, i.e. a solution that resides at the intersection of S, and S,. Ideally one
would desire a condition such that S, and S, intersect at only a point (Figure 4.3a), which
would define a single unique solution. A more realistic situation is that the two regions
either overlap or have no intersection. The former case may occur if one or both of the

known constrains that defines S, and S, is too “loose” or from errors associated with the
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measurements. In the case where the two sets overlap (Figure 4.3b), either a tighter
constraint or additional information is needed to discriminate between the solutions defined
by the intersection of S, and S,. This is also referred to as a feasible set problem
(Combettes, 1996), where more than one solutions satisfies all of the known constraints.
In the latter case, the best solution possible is one that minimizes the distance between S,

and S, (Figure 4.3c).

a b C

2

Figure 4.3 Schematic representation of the three possible conditions when searching for
a solution(s) that satisfies the known constraints for a given problem defined, as S, and S,.
Case (a) corresponds to the two sets intersecting only at a point, providing a single, unique
solution. Case (b) illustrates a feasible set where any solution within the shaded region
qualifies as a correct solution within the limits of the known constraints, and (c), in the
absence of any overlap, one seeks to find the solutions that minimizes the distance between
S, and S,.

Another important point to mention is that with the added complexity of having
non-convex sets, it is possible to have all three conditions described in Figure 4.3 at the
same time. Replacing S, or S, with a non-convex set introduces a condition where there
are more than one local minima. This creates another feasible set where the set of potential
solutions may be any of a number of possible local minima, i.e. the set of feasible solutions

may also be a discontinuous set and non-convex set.
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4.2.2 Feasible Set Approach to Direct Methods

Now that some of the terminology is established, it is convenient to return to the
notation of unitary structure factors and density maps, U(k) and u(r). To cast the problem
of direct methods into projection onto sets, one first can define a set S, such that all the
members of that set have structure factors whose moduli equal the experimentally measured
moduli U (k)I,

S, = {UK) : IUK)I = 1U (k)!}. (4.28)

It is also known that this is a non-convex set (Stark, 1987).

The second set S, is defined using the functional g(U(k)) such that all of its
members U(k) produce a value below some maximum value, (equation (4.20)). Now,

instead of a generalized function g(U(k)), the FOM defined in equation (4.15) is used such

that
U (K)) = FOM Z[Un(®0 = FTOT {Un k) l 4.29
c( m( ) - - z’lUm(k)l . ( . )
Now it is possible to define S, as
S, = {U(k) : g(U(k)) < B} (4.30)

where B is again a scalar quantity that is to be minimized.

Now, the problem of direct methods can be described as finding the set of solutions
U(k) located at the intersection of S, and S, which thereby satisfy all of the known
constraints, i.e. low FOM and consistent with measured reflections. Using the above
formalism it is possible to write a generalized iterative direct methods operation using

successive projection onto sets as
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Umn+1(k) = U, (k) +x[P(n{o‘(FT‘{Um(k)})})— Um(k)], O<A<2 (4.31)

which includes an operation of the functional 0() and a projection P() onto the set of

experimental moduli including the current phase information.

Im 2

U (K)|
N\

\
U (h)l

Figure 4.4 Schematic representation showing the projection onto the measured moduli
for two different reflections, 1U.(k)I and [U.(h)l. The dependence on A for A>1 and A=I is
also shown.

The method of projection onto the measured moduli is shown schematically in
Figure 4.4. For a Sayre-type approach the functional é(um(r)) defined by the sharpening

operator in equation (4.10) is used or for minimum relative entropy a functional defined by

equation (4.12) would be used. It is also possible to illustrate the entire process, with each
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Figure 4.5 Schematic representation of the intersection between the set S,, which is the
set of all solutions with moduli equal to the experimentally measure moduli IU (k)I, and S,,
which is defined as the set of solutions, when evaluated by the functional, g(U(k)), i.e. the

FOM, has some value less than §.

iteration stepping closer to a set of fixed points which minimizes g(U(k)) (defined as the
FOM) and satisfies (ideally) the experimentally measured moduli, used to establish set S,
shown in Figure 4.5. In the case where there is no union between S, and S,, it is still
capable of finding the minimum distance between the two set (Combettes, 1996, pp. 202-

209; Chrétien and Bondon, 1996).

Until now little attention has been paid to the relaxation parameter A, which for best

results is typically in the range 1 <A <2 (Levi and Stark 1987; Combettes, 1996, p. 168).

Figure 4.6 illustrates how the algorithm works assuming two convex sets and different
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values of A. However an ideal value for A is strongly problem dependent and needs to be

calibrated for each situation.

a b

S,
Figure 4.6 Projection onto S, shown for (a) A=1 and (b) A>1.

It should be mentioned that a necessary condition of the successful application of

the iterative projection onto sets to direct methods is dependent on the non-expansivity of

the operator Q. To assure this

P(O(u,(r))) = P(0O(u,(r))) (4.32)
is used where o is considered a renormalization factor chosen to minimize aé(u(r))-u(r).

It may be shown numerically that for a scaling factor a which minimizes either the L, or L,

mean

/o

A p
Lp= {2|um(r)—a0(um(r)| } (4.33)
r
produces a non-expansive operator for both the Sayre-based operator and the minimum
relative entropy operator.
Another important point to mention is how the set of moduli and phases, i.e.

solutions, evolve with each iteration. Initially a subset of the total set of reflections is
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seeded with some initial phase value. (How the initial phase values are chosen will be

discussed in more detail in section 4.3.) Only the subset of moduli with the assigned

phases are used in the first cycle of the algorithm. In a conventional =, sense two large

unitary structure factors are more likely to predict the phase and magnitude of a third

structure factor. Similarly, if the same phase value is predicted by several different X,

relationships, there is a higher probability that this phase is correct and should be added to
the current set of moduli and phases to be used for further steps in the phase restoration. It
is necessary to encode into the algorithm a method for adding the phases (and correspond
moduli) calculated at each cycle to the initial subset of moduli and phases. This process of
selectively adding structure factors to the set used in the calculation at each iteration is also
referred to as the phase-extension constraint (Marks, Sinkler and Landree, 1998).

The method used involves comparing the structure factor (moduli and phase)
calculated at the end of each cycle U_,, (k) to the corresponding experimentally measured
moduli IU (k)I. If the calculated magnitude IU(k)! is comparable to U (Kk)I, there is a higher
probability that the phase value has been correctly predicted. That phase value and
corresponding measured moduli are then added to the set of moduli and phases used in the

next iteration. This may be expressed as
a0, K>y, U K); where 0 <y, <1 (4.34)
and a is the renormalization constant from equation (4.33) and v, is an adjustable scalar

defined by
Y,=0.3exp(-m/2). (4.35)

Addition of this phase-extension constraint connects the direct methods approach based

upon real space operators (such as the Sayre-type or minimum relative entropy operators)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

and the classical reciprocal-space algorithm (such as the Tangent formula) which gradually

adds beams to the set of defined reflections.

4.3 Genetic Algorithm

While the above discussion details the process of how one goes from a few known
phases and experimentally measured moduli to a complete self-consistent restoration of the
missing phases and unmeasured moduli {and ultimately a related density map of the surface
structure), what it does not discuss is a means of determining the values of the initial
phases used to seed the algorithm. In terms of projection onto sets, the values of the initial
phases assigned will determine where along S, or S, the algorithm is to begin, and
therefore which minimum it will find. Consequently it is important to consider how and
what phases are initially assigned to find the most self-consistent solution.

In all structures (except p3, p3ml, p3Im, p6mm) is it possible to assign an
arbitrary phase value for 1-2 reflection in two dimensions by the virtue of origin definition.
Establishing an origin prevents finding redundant solutions that are identical except for
being separated by a fixed translation. Under favorable conditions it is sometimes possible
to assign phases to other strong reflections based upon other known phase relationships.
Typically some minimum definition is necessary to assure that the solution will converge.
This again is a problem dependent parameter, however as a guideline a definition of 10-
20% is usually sufficient to assure convergence. A definition of 10% means that a
sufficient number of reflections have been assigned phases such that after a single iteration
of the minimum relative entropy algorithm, 10% of the total number of reflection have been
strongly defined based upon the criteria established in equations (4.34) and (4.35).

Given that our FOM measures the self-consistency of all of the structure factors

(moduli and phase) for a single iteration of the minimum relative entropy (or Sayre)
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algorithm, what one seeks is the starting set of phases that when iterated through the
minimum relative entropy algorithm and all of the missing phase values have been
assigned, will have the lowest FOM. The question still begs to be asked, how does one
find the best starting phases to minimize the FOM?

For the task of assigning the initial phases that are otherwise not controlled by
origin definition or established phase relationships, a genetic algorithm (GA) search
strategy has been implemented to search for the best starting set of phases. Compared to
other search techniques, a GA proves to be robust and requires the least initial information
about the function being minimized. A comparison of GAs to other search strategies is

shown in Table 4.1 (Xiao and Williams, 1993).

Table 4.1 Comparison of conventional search strategies versus genetic algorithms
(Xiao and Williams, 1993).

Numerical Methods Stochastic Methods
SD CG NR | SX SA GA

derivative calculation can be avoided? x x x
both local and global minimum can be % x
found?

both continuos and discrete search space x x
can be applicable?

learning to adaptive environments? x
parallel computing? %
overall robust? x x

SD, steepest descent; CG, conjugate gradient; NR, Newton-ﬁaphson;—§x, simplex; SA,
simulated annealing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

4.3.1 The Importance of Genetic Algorithms

While the basic structure of GAs is well established (Holland, 1975; Davis, 1987;
Goldberg, 1989; Koza, 1992), a number of points about how it has been implemented for
multi-solution phasing problems merit description. In the simplest case, we start with a set
of structure factors, N, then encode the phases of a subset, n, of typically the strongest
structure factors into a set of bits (referred to as a gene) using conventional binary coding
or Gray codes. Each gene would then represent the phase for a single reflection. This
digitization need not be too precise. After the first iteration of the minimum relative entropy
algorithm, all of the phase values are allowed to vary except those used to define an origin.
Consequently, a quadrant search (45, 135, 225, 315) is generally adequate for non-
centrosymmetric and (2 bits for each gene) and for centrosymmetric structures, a single bit
is used. All of the n genes are stored end-to-end as a single string of bits, referred to as a
chromosome. Starting with a population P of chromosomes, the remaining (N-n) phases
calculated and evaluate using the FOM described in equation (4.15). Then based upon
some “natural selection” criteria (which favors good FOM values) choose “parents” for the
next generation. From pairs of parents, "children" are produced by cross-linking, i.e. a
location along the parent chromosomes is selected at random and the bits on one side of the
location are interchanged. Some level of “mutation” is then introduced into each new
population by randomly switching some of the bit values from O to 1 or visa-versa. The
FOM s for these children are then evaluated and the process iterated with these being the
new parents for the next generation. In addition to this basic structure various
modifications of the process can be incorporated, some of which are mentioned below. A

schematic representation of the entire process is shown in Figure 4.7.
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Figure 4.7 Flow chart of the basic genetic algorithm process. “N” is the total number of
reflections; “n” is the subset of “N”” whose initial phase value is controlled by the GA; the
“evaluation engine” is the Minimum Relative Entropy algorithm which restores the
remaining phase values based upon the initial phases and calculates a corresponding FOM;
“P” corresponds to the members of the parent population; through a combination of cross-
linking and mutation “M” new children are created and some percentage of the best (lowest
FOM) members of the parent population are passed on to the current population “p”; after
the current new population “M+p” are evaluated, the best “P” members are used as the
current parent population; during each iteration, the best “S” members are kept as the
current collection of best solutions. The entire process is iterated for a fixed number of

cycles.
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How cross-linking is performed with respect to the order of phases can be
important. The standard method is to cross-link randomly along the chromosome,
disrupting longer schemata (see section 4.3.2) and disturbing individual phases. Forcing
cross-linking to occur only between the genes was considered and appeared to have a
small, favorable influence. Using an order to maximize linkage between phases will
improve the convergence, although in practice ordering in terms of absolute structure
factor, unitary values or using strong, low-order reflections (to enforce phasing out to
higher angles) were all rather similar.

While GAs are better suited toward exploring than refining specific solutions, one
still needs to avoid strategies which have a tendency to over converge. One modification
involved how parents are chosen. Typically a “roulette wheel” method is used where the
probability is proportional to the value of the FOM. Instead we implemented a simple

ranking scheme (Baker, 1985) weighted by:

um = exp(—1L0*ran1 * T) —exp(-L0* T)
LO-exp(-1.0*T)

(4.36)
where T is a variable controlling how strongly to favor lower values and ‘num’ is the
weighted number between 0 and 1. For all cases herein T=1 was used. By increasing the
value of T, lower numbers become more strongly weighted. The value num is then
combined with

p = | + integer (num * N) 4.37)
to choose the “p”th chromosome as a parent. Beyond this, there are two different
approaches to choosing the second parent. One possibility is to simply choose using the

same approach as described above, randomly based upon relative FOM of each individual

chromosome. The second approach is to resort the current population based upon how
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similar it is to the first parent. Then choose the second parent based upon the same ranking
scheme described above. This is discussed by Goldberg (Goldberg, 1989) as the “sharing
function”, referring to the number of bits shared between any two chromosomes. A simple
analogy within nature would be, cats mating with cats and dogs mating with dogs. By
each mating with similar species, both species of “chromosomes” are able to evolve
simultaneously. The use of a sharing function enhances the ability of find multiple “niche”
solutions or specializations within the population instead of converging to a single
minimum.

The second change to prevent convergence of the algorithm to only a single solution
(enforcing a multi-solution search) was to employ a “uniqueness” operation, removing
from the pool of possible parents at each generation copies of any given chromosome.

A final modification which was introduced to enhance convergence was to maintain
a running set of the best solutions at the end of each iteration. Then some of these

solutions were included in the pool for the N parents in every other generation (eiitism).

4.3.2 Schemata

One of the reason GAs are a powerful global search method is related to how it
handles schemata (Holland, 1968, 1975; Goldberg, 1989). A schemata is a similarity
template describing a subset of chromosomes with similarities at certain position, similar to
phase combinations for different structure factors. For the simple case where the number
of parents and children are the same, even though only N new FOM values are calculated
for each generation the algorithm effectively processes on the order of N> schemata
(Goldberg, 1989). Crossover disrupts these schemata if it occurs within their length, so
shorter schemata are better preserved across generations. This is another reason why the

order of the genes can play a strong part in the convergence of the algorithm, and why the
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convergence is improved if all of the genes associated with strong reflections are grouped
together along the chromosome. Since favorable phase combinations are the target of a

direct methods analysis, GAs provide an almost ideal search process.

4.3.3 Parameters

The three fundamental control parameters are the population size, number of
children and mutation rate. Population size has been discussed in the literature
(Grefenstette, 1986; Schaffer, Caruana, Eshelman and Das, 1998; Davis, 1989: De Jong
and Spears, 1990; Nakano, Davidor and Yamada, 1994) with little definitive conclusion.
One needs a balance between schemata exploration which favors larger sizes, and schemata
reinforcement which will favor smaller numbers. We found that modest population sizes
3-5 times the number of bits worked well. Also, instead of producing the same number of
children as parents, the number of children was treated as a separate input parameter,
choosing only the top P children to act as parents for the next generation. The optimal
mutation rates were typically low, however this again varies. Each of these parameters are
strongly problem dependent such that optimization for any given class of problems is
required.

A final point is the effect of the size of the solution space explored on the algorithm.
By reducing the number of beams allowed to vary, either by origin definition or inequality
relations between phases, the effective size of the hyperspace can be decreased, thereby
increasing performance. In the non-centrosymmetric case, limiting the phase of a strong
beam to a smaller subset of possible phases effectively defined a unique origin, which was
sufficient for the solutions to converge. For the centrosymmetric model, an origin was
defined by assigning specific phases to two beams, which remained unchanged throughout

the calculation.
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SOLUTION OF 2 DIMENSIONAL
SURFACE STRUCTURE MODELS
USING DIRECT METHODS

To test the application of the direct methods algorithm with surface diffraction data
various two dimensional models were generated and analyzed. It should be stated that the
results being presented here were obtained with a version of the algorithm that was in its
relative infancy. It is certain that these same models, run using the latest version of the
algorithm with improved handling of the unmeasured reflection, would show improved
convergence. Nonetheless, this initial data are still important in demonstrating the
dependence on the exact form of the FOM and ultimately why the Sayre-based operator
was abandoned in place of the minimum relative entropy operator.

The structure factors (moduli and phases) for five different two dimensional models
were calculated. The moduli were than used as the experimental data along with the direct
methods algorithm to restore the two dimensional density map of the surface structure.
Both non-centrosymmetric and centrosymmetric models were generated using an
arrangement of silicon atoms or silicon plus indium atoms with reflections out to 1 A
resolution (Landree, Collazo-Davila and Marks, 1997; Marks and Landree, 1998).

The atomic positions for the non-centrosymmetric and centrosymmetric models are

75
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Table 5.1 Atomic positions for non-centrosymmetric trimer model (model 1) and 4x2
centrosymmetric model (models 2 through 5). The a and b spacing are given along with
the corresponding angle, y. The values of x and y correspond to the atomic positions along

aandb.
non-centrosymmetric trimer model: 4X2 centrosymmetric model:
a=1152A b=11.52A a=768A b=1536A
Y= 120° Y=90°
X __ y 3 ~
0.17 0.0 0.19 0.0
0.0 0.17 0.81 0.0
-0.17 -0.17 0.29 0.5
0.71 0.5
0.5 0.15
0.5 0.85
0.5% 0.28%
0.5% 0.72%
0.0 0.117
0.0 0.307
0.0 0.693
0.0 0.883

% - In model 3 and model 5, these atoms are indium and the remaining atoms are silicon.

shown in Table 5.1. To simulate realistic data including experimental errors a random term

n(k) was added to each of the calculated moduli, defined as
nk) =B [ IFE)I] +y (5.1)
where r* is a random number between -e= and +e with a gaussian distribution having a

standard deviation of 1, B is a scaling term equal to 10% of the average of the three

strongest reflections and v is equal to 1% of the average of the three strongest reflections.

This resulted in a final set of moduli with errors ranging from roughly 10% for the
strongest reflections and >100% for the weaker reflections, modeling a Gaussian error

distribution with a constant background.
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The genetic algorithm for these models was run using 60 to 80 parents with a
parent-to-child ratio of 1:2 or 1:3. The mutation rate used corresponded to roughly
mutating the phase for every fifth reflection. In practice, this is now considered high in
terms of mutation rates. Currently the optimal mutation rate is one mutation per

chromosome, i.e. mutating the phase of a single reflection per starting set of phases.

5.1 Correctness Factor

To monitor the progress of the algorithm, a “correctness factor” (CFOM) was
calculated comparing the phases predicted by the direct methods algorithm and the known
“true” phases for the given structure (Landree, Collazo-Davila and Marks, 1997). The
CFOM is defined as

Y Fo(k) I {cos(1-8.—6,)}
Y 1F.(k)I

CFOM = (5.2)

where F, is the modeled structure factor, . is the phase calculated by the direct methods

algorithm and O, is the true phase for each beam. It was observed that a CFOM of 0.1

provided enough information to solve the structure either by direct inspection or (if
necessary) by additional structure completion techniques such as Heavy-atom Holography
(Cowley, 1990; Schwartz and Cohen, 1977; Marks and Plass, 1995). Comparison of the
calculated FOM from equation (4.15) with the corresponding CFOM was used to indicate
whether direct methods algorithm was successful at solving a given model. A necessary

condition for success was solutions with the lowest calculated FOMs also have the lowest
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calculated CFOMs. Conditions where the lowest FOMs calculated were not among the

lowest CFOMs indicated the algorithm was not successful.

(o N (o Neo) (e Ne/
Figure 5.1 (a) Non-centrosymmetric silicon trimer model and (b) the corresponding
calculated density map.

5.2 Non-Centrosymmetric Model

5.2.1 Trimer Model

Figure 5.1 is the model and calculated density map for the non-centrosymmetric
trimer model. Model | has p3/m symmetry and contains a total of 49 reflections. The
origin was defined by restricting the range of the (4,3) reflection to within 60° and 180° and

limiting the (2,2) beam to within 0° and 180°. This models was analyzed using the Sayre-

based operator described in equation (4.9) for both the robust from of the FOM (r=1 in
equation (4.15)) and the more conventional square form (Y=2 in equation (4.15)). In both

cases (y=1 and y=2), the Sayre operator successfully isolated the correct solution among
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Figure 5.2 Plot of the FOM versus CFOM for the non-centrosymmetric trimer model
using the more robust FOM (x; y=1) and the square form of the FOM (O; Y=2) with no
missing reflection. Both cases were run using the Sayre operator.

P
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the top 10 solutions. However, it is also evident upon inspection of Figure 5.2 that the

robust form of the FOM (y=1) was more tolerant of associated errors, producing a higher

density of solutions with low FOMs and corresponding low CFOMs than for the case

when y=2.
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Figure 5.3 (a) Centrosymmetric 4x2 model consisting of 12 silicon atoms and (b) the
corresponding calculated density map.

5.3 Centrosymmetric Model

For models 2 through the 5, the same atomic structure was used (refer to Table
5.1). The model has p2mm symmetry with the (0,5) and (3,5) beams set to 180° to define

a unique origin. In additional it was possible to define the (4,0) and (6,0) to 360° based

upon X, relationships (Woolfson and Fan, 1995).

5.3.1 4x2 Structure

For the initial 4x2 model a total of 105 reflections were used. Figure 5.3 shows the

model and its corresponding calculated density map. As was done for the non-

centrosymmetric model, the data were analyzed using the Sayre operator (equation (4.10))

along with two different cases for the applied FOM (y=1 and y=2 in equation (4.15)). As
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was also observed in non-centrosymmetric trimer model, both y=1 and y=2 were

successful at finding the correct solution, i.e. solutions with a low FOM also possess the

x Y= 1 robust
? o Y=2square

LANLESLENL BN L BNL SN A B LN N B SN N A

CFOM

Figure 5.4 Plot of the FOM versus CFOM for the centrosymmetric 4x2 model using the
more robust FOM (X; y=1) and the square form (0J; y=2) with no missing reflections or
holes present in the data set. Both sets were analyzed using the Sayre operator.

lowest CFOMs, shown in Figure 5.4. It should also be noted that the more robust form of

the FOM (y=1) still marginally out performed the more conventional y=2 form of the FOM.
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Figure 5.5 (a) Centrosymmetric 4x2 model consisting of 10 silicon atoms and 2 indium
atoms and (b) the corresponding calculated density map.

5.3.2 4x2 Structure with 2 Types of Atoms

For model 3, both silicon and indium atoms were included in the unit cell structure

(refer to Table 5.1). Figure 5.5 shows the atomic model and the calculated density map for

the 4x2 model with two indium and ten silicon atoms. For all of the remaining models

(models 3 through 5) the more robust fitting parameter was used (y=1) and the two

different operators were compared, namely the Sayre-based operator in equation (4.10),
and the minimum relative entropy operator described in equation (4.12). Figure 5.6 shows
the CFOM versus FOM plot for both the Sayre method and the minimum relative entropy
method. Upon inspection it is clear that the minimum relative entropy operator performed

far superior compared to the Sayre-based operator. While the minimum relative entropy

operator completely restored the correct solution (CFOM=0.0), the Sayre operator was not

as successful at restoring the phase information or isolating the true solution.
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o minimum rel. entropy operator
O Sayre operator

Model 3
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0.41
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Figure 5.6 Plot of the FOM versus CFOM for the centrosymmetric 4x2 model with two
different types of atoms (silicon and indium) present using the minimum relative entropy
operator (O) and the Sayre operator (CJ) with no missing reflections or holes present in the
data set. Both cases were run using the robust form of the FOM (y=1).
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5.3.3 4x2 Structure with Missing Reflections
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Figure 5.7 (a) Centrosymmetric 4x2 model consisting of 12 silicon atoms and (b) the
corresponding calculated density map excluding reflection coincident with surface 1x1 or
bulk reflections.

Model 4 consists again of only silicon atoms within the unit cell, however now

reflections that would normally coincide with either bulk reflection or 1xI1 surface

reflections have been removed from the data set. This includes among them some of the
strongest reflections, shown for the strongest 30 reflections in Table 5.2. Figure 5.7
shows the atomic structure and calculated density map for the remaining reflections. Figure
5.8 is the corresponding CFOM versus FOM plot for both the Sayre operator and minimum
relative entropy operator comparing the calculated solutions to the true solutions. While
neither operator performed as well as was observed in the previous models, both methods
found reasonably good CFOM values (< 0.1) indicating correct assignment of a majority of
the phase values. At this point, sufficient information is available to determine which

solution is the correct solution and, if necessary, complete the structure.
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Table 5.2 Thirty strongest structure factors for models 3-5; model 3 is the same as model
5 with the missing reflections included.

h k Models 3 & 4 Model 5

2 2 0.316569 0.369099
2 % “0.261807 "0.315425
y 0 ~(.243135 “0.294317
0 5 0.230172 0.272069
0 7 0.19207 0.231195
2 7 0.175555 0.209605
2 5 0.188602 0.209008
1 9 0.114184 0.189854
I 2 0.072682 0.182747
6 v “0. 133009 “0.170699
L 4 0.117841 “0.164648
3 7 0.122018 0.159623
0 6 0.190422 0.152341
4 5 0.1464 0.147433
6 7 0.06872 0.130556
5 9 0.092332 0.124187
% 8 0122191 “0.120740)
2 +4 =0.203030 T TSN3S
3 I 0.051 0.118047

1 4 0.063744 0.117468
4 7 0.074547 0.113024
0 10 0.135422 0.107284
4 2 0.076938 0.107225
2 /2 “0.084763 “0. 1038

0 1 0.104691 0.101061
3 0 0.015168 0.09692

0 9 0.026972 0.094193

1 7 0.027356 0.093642
0 2 0.012494 0.091613

* Missing reflection for Model 4 and Model 5
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Figure 5.8 Plot of the FOM versus CFOM for the centrosymmetric 4x2 model with one
atom type present using the minimum relative entropy operator (O) and the Sayre operator
(O) excluding reflections coincident with surface 1x1 and bulk reflections. Both cases
were run using the robust form of the FOM (y=1).
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5.3.4 Pathological Problem

It is with some levity that this model is referred to the *“Pathological Problem”
containing two species of atoms and missing reflection. When these models were first
investigated, the direct methods algorithm for surface data was somewhat in its infancy.
Using the most recent version of the algorithm, it is expected that the solution with the

lowest FOM would also be the correct solution as we observed in the previous mode!.

@ © @ © @ O g
O o0 O g 0 o ©

Figure 5.9 (a) Centrosymmetric 4x2 model consisting of 10 silicon atoms and 2 indium
atoms and (b) the corresponding calculated density map excluding reflections coincident
with surface 1x1 or bulk reflections.

Regardless, this analysis is still useful in that it demonstrates the superior ability of
the minimum relative entropy over that of the Sayre based method. Figure 5.9 is the model
and calculated density map for the unit cell with indium and silicon atoms in the unit cell
(identical to model 3) and unmeasured reflections. As is evident from the CFOM versus
FOM plot in Figure 5.10, the Sayre method was completely unsuccessful at determining
the correct solution, while the minimum relative entropy method did isolate the correct

solution.
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Figure 5.10 Plot of the FOM versus CFOM for model 5. An absolute value of 0.055 has
been added to the value of the FOM for the Sayre operator to avoid overlap. As is evident,

the Sayre operator did not successfully find the correct solution while the minimum relative

entropy operator did find the correct solutions among the top 4 unique solutions.

Figure 5.11 shows the first four unique solutions determined from the minimum
relative entropy method. From simple inspection of the various unique solutions, it would
be possible to eliminate two of the solutions simply based upon poor contrast and non-atom
like features present. The remaining two solutions, suggesting two different surface

arrangements of the silicon and indium atoms, could be discriminated based upon

numerical
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Figure 5.11 Phase maps of the first four (a)-(d) unique solutions within the final set of
solutions for the 4x2 centrosymmetric solution with two types of atoms and missing
reflections. Based upon the poor contrast and “un-physicalness” of solutions (b) and (c), it
is possible to discard those solutions. Constructing models from solutions (a) and (d) and
comparing the measured and calculated structure factors would reveal which is the true
solution, solution (d). (compare with Figure 5.9b).

analysis (*) of the calculated structure factors for each model and the experimentally

measured moduli. It should be reiterated that the only basis thus far for determining these

solutions has been the phase relationships for the given reflections, i.e. the FOM. It is still
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necessary to construct models for each potential solution using atom sites suggested by the

different density maps to determine whether a given model is the correct surface structure.

5.4 Discussion

The apparent success at finding the solution to these various 2D surface structure
models indicates, that for experimentally measured surface diffraction reflections with
reasonable errors, direct methods along with minimum relative entropy are an important
tool for solving surface crystal structures. While this is the first systematic study which
has been applied to calculated models, this algorithm (and with subsequent improvements)
has been applied to numerous data sets for which the structure has already been solved and
found the correct solution. Which helps to confirm the fact that direct methods of surface

diffraction data is a viable technique for determining surface crystal structures.
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Ti0,(100)-1x3 SURFACE
RECONSTRUCTION SOLVED BY
DIRECT METHODS

6.1 Background

Historically there has been a great deal of interest in the surface of TiO, (rutile),
motivated largely by the discovery of its catalytic properties for decomposing water into
hydrogen and oxygen in the 1970’s (Fujishima and Honda, 1972; Henrich, 1979; Henrich,
Dresselhaus, and Zeiger, 1977), providing possibilities for fuel cell technology .

6.1.1 Previous Studies

Since this initial discovery there have been numerous experimental (Chung, Lo, and
Somorjai, 1977; Szabo and Engel, 1995; Kao, Tsai, Bahl, and Chung, 1980; Muryn,
Hardman, Crouch, Raiker, and Thornton, 1991; Murray, et al., 1992; Kao, Tsai, Bahl,
and Chung, 1980; Zschack, Cohen, and Chung, 1992; Zajonz, Meyerheim, Gloege,
Mortiz and Wolf, 1998) and theoretical (Oliver, Parker, Purton, and Bullett, 1994; Munnix
and Schmeits, 1984; Kasowski and Tait, 1979) investigations of the TiO,(110) and
TiO,(100) surface.

91
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Unlike the (110) surface of rutile, which possesses only a single 1x2 surface
reconstruction upon annealing at 888 K or higher (Szabo and Engel, 1995; Kao, Tsai,
Bahl, and Chung, 1980), the (100) surface is capable of forming several different
reconstructions including a 1x3 unit cell when annealed at 873 K. Higher temperature heat
treatments of the TiO,(100) surface produce a 1x5 surface reconstruction at 1073 K and a
X7 surface unit at 1473 K respectively.

One previous study utilizing 19 measured surface structure reflection from Grazing

Incidence X-ray Diffraction (GIXD) and low energy electron diffraction proposed a model

for the TiO,(100)-1x3 surface consisting of microfaceted TiO,(110) planes based on

Patterson functions (Zschack, Cohen, and Chung, 1992). A second, more recent model
also using 131 surface structure spots and 86 measurements along the surface truncation
rods, has been proposed by Zajonz, et al. (1998) which has many similar features to the
model proposed by Zschack. The model by Zajonz appears to consist of {110}-type
microfacets along the surface, similar to the microfacet model proposed by Zschack. The
primary differences between the two models are the final refined atoms positions, the
coordination of the individual surface atoms and the number of layer allowed to relax.
While Zajonz et al. makes no mention of how it derives its initial atoms positions (but
would appear to be an assumed {110} type terminated surface based on Zschack’s model),
toward the end of the article it does present a Patterson maps which they use to establish the
validity of their model.

Utilizing Patterson functions as a means of determining initial atom positions is
problematic, particularly in the case of large unit cell structures. Since Patterson functions
only show interatomic vectors, it can be difficult to perform a comprehensive search of all

possible surface atomic configurations. One may find atomic arrangements which are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

somewhat consistent with the diffraction intensities, but not the best configuration; a local
minimum rather than a true global minimum.

The data recorded by Zschack were analyzed using the minimum relative entropy
algorithm with a genetic algorithm search strategy to reconstruct charge density map of the
atomic arrangement of the surface atoms. This structure represented the first “unknown”
native surface reconstruction solved using this technique and is still the only structure
solved using direct methods with fewer than 20 unique reflection (Landree, Marks,
Zschack and Gilmore, 1998).

Table 6.1 (Zschack, Cohen and Chung, 1992) Measured k, /, intensity and error in
standard crystallographic notation for the TiO,(100)-1x3 surface reconstruction.

3 i (F,)° >

4 0 5.51 3.03
5 0 38.0 2.80
7 0 11.22 2.21
8 0 1.32 1.43
10 0 4.64 3.04
11 0 2.97 2.77
13 0 0.0 1.00
14 0 0.0 1.00
2 | 7.73 4.10
4 1 6.36 3.38
5 1 6.55 3.11
7 1 4.59 1.64
8 1 30.07 1.35
10 1 2.31 0.96
11 1 5.10 1.65
7 2 2.43 2.23
10 2 2.91 1.01
11 2 5.32 2.18
14 2 0.0 1.00
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6.2 Data

The magnitude of the structure factors for the 19 measured beams are listed in Table
6.1. The original source of this table and a detailed explanation of how the measurements
were made are available in Zschack, Cohen and Chung (1992). The data from the more

recent study by Zajonz et al. were not available for analysis.

Analysis was performed based upon a 1x3 unit cell with the a-axis along [001]

(A=2.96 A) and the b-axis along the [010] (B=13.77 A). The original diffraction pattern
showed symmetry and systematic absences compatible with four possible plane groups:
pm, pg, p2mm and p2mg. The glide planes were taken along the [001] axis and mirror

planes along the [010] axis. Phases for the structure factors were calculated using a
minimum relative algorithm with unitary structure factors and a robust (y=1 equation 4.14)

figure of merit (FOM) (Marks and Landree, 1998). For each plane group, the best two or
three unique solutions were examined. Charge density maps generated were used to
construct surface structure models of the Ti atom positions. Because only a small number
of beams from a limited region of diffraction space were measured, direct interpretation of
the maps is problematic, as is discussed later. After the Ti atom positions were allowed to
relax, a global R-factor is calculated. Only models with a R-factors corresponding to 0.41
or lower were considered reasonable solutions. This excluded all the solutions investigated

except those with pm plane group symmetry. These models were used as initial estimates

of the Ti atomic positions for %’ refinement.
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Figure 6.1 Charge density map for (a) one atom, (b) two atoms, (c) 4 atoms and (d) 6
atoms in a single 1x3 unit cell are shown. Charge density maps are calculated using the
same 19 reflections shown in Table 6.1.

6.3 Direct Methods Solutions

For a uniform sampling of reflections from reciprocal space, the charge density for
a single atom can be approximated as being circular in projection; bright circular features in
the generated charge density maps are normally interpreted as atom sites. However, with
only 19 beams, all sampled from a limited sub-quadrant of reciprocal space, the charge
density for a single atom does not appear as a well defined disc due to the missing
information. In addition, as more atoms are included in the unit cell, interference generates
artifacts which can be mistaken as possible atom sites, see Figure 6.1.

In order to identify the likeliest titanium atoms sites within each of the electron
density maps, the charge density map of a single titanium atom (Figure 6.1a) was cross-
correlated with each individual map to highlight potential atom sites. Figure 6.2 is an
example of a given charge density map from the direct methods solution and the
corresponding potential atoms sites after cross-correlation with a single atom, numbered in

decreasing order of correlation.
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Figure 6.2' (a).A given charge density map from Direct Methods algorithm and (b) its
corresponding image after cross correlation with single atom (see Figure 6.1a). Peaks are
ranked in order of decreasing correlation. The 1x3 unit cell has been marked for reference.
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Figure 6.3 (Top row) Charge density maps of the top three unique solutions for the pm
plane group symmetry. Likely titanium candidate sites found by cross correlation with a

single titanium atom are marked by (©). (Bottom row) Corresponding charge density
maps calculated by placing a single titanium atom at the indicated atom sites suggested.

Figure 6.3 are the charge density maps generated from the direct phasing and the

corresponding model constructed by the same means for the top three solutions with pm

plane group symmetry.
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6.4 Numerical Analysis
6.4.1 x* Analysis

The %’ used to refine the atomic positions and evaluate the model is of the form

2 1 N (F,mf -[F.mP)?
"N-m % 2
h=I o (h)

(6.1)

X

where G are the measured errors, ‘N’ is the total number of reflections and ‘m’ the number

Table 6.2 Relative titanium atom positions of TiO,(100)-1x3 models with calculated x?
value. The model with 4 Ti atoms is the best fit to the experimentally measured structure

factors.
Relative Micro | Micro | Missing | Missing | 4 Ti ST 5Ti
Bulk TiO, -facet® [ -facet | Row® | Row pm (a) (b)
Positions p2mm p2mm
i X Eos
Ti 1 0.0 . . . . . . .
Ti2 0.333 ] 0.0 0.334 10.328 [0.340 |0.325 0.359 10.139 10.216
Ti 3 0.666 ] 0.0 0.666 | 0.655 |0.660 |0.673 0.608 | 0.782 | 0.863
Ti 4 0.166 | 0.5 0.181 }10.179 [0.173 ]0.175 0.179 ] 0.184
Ti S 0.500 | 0.5 0.448 1 0.412
Ti 6 0.833 | 0.5 0.819 10.812 ]0.827 ]0.809 0.535
A ———— S ————————
x? 7.83 8.47 9.46 8.87 345 ]5.48 [6.41
D.o.F 15 15 15 15 15 15 15
%" <10® | <10° |<10° [<IO® 0.002 | <10® | <10®
* For the pm and p2mm space groups, atomic positions were refined only along the x
direction.

® The Microfacet model had two atoms at the origin, which was modeled by a double

occupancy for the purpose of % refinement.
¢ Degrees of Freedom: Correspond to the number of beams minus the number of fitting
parameters.

¢ This is the probability in percent of that value of x’ or higher occurring for 1x10°
repeated experiments. In cases where the %* term is less than 1.0, the value is taken to be
the probability of that %?or lower occurring.
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of parameters being fit. For a perfect fit of the model to the observed structure factors

within experimental uncertainty ¥’ should be equal to 1. In certain cases, the value of the

Ti Debye-Waller factor was included as a fitting parameter along with the atomic positions

in the refinement. However, the value of the Debye-Waller did not contribute greatly to the
x’, and was limited to a range of .5 to 15 times the bulk Ti Debye-Waller value. One Ti
atomn was fixed as an origin definer, and the remaining atoms were allowed to relax relative

to it. Initially only the positions of the Ti atoms were refined, once the best solutions were

achieved, refinement of the oxygen atom positions was included.

Table 6.3 Relative titanium and oxygen atom positions of TiO,(100)-1x3 models with
calculated %’ value.

— _ R

Relative 4Ti 4 Ti 4 Ti 4Ti 4 Ti 4 Ti 4 Ti 4 Ti 4 Ti

Bulk TiO, 20xy |40Oxy |30xy |60xy |60Oxy |8Oxy |7O0xy |9Oxy

Positions (b) Saz

X pos os® | x pOs X pos Ixpos |xpos |xpos |xpos |xpos |x pos__1x pos
Til 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ti 2 0.333 }0.0 .359 0.358 [0.359 }0.382 }0.368 (0.370 |0.384 ]0.369 ]0.366
Ti3 0.666 0.0 .608 0.609 |0.611 0.627 {0.610 |0.608 {0.633 |0.610 ]0.610
Ti 4 0.166 |0.5 .179 0.184 ]0.184 {0.194 ]0.192 ]0.184 ]0.199 ]0.192 ]0.189
Ti 5 0.500 |0.5
Ti 6 0.833 {0.5
Oxy 1 0.0 0.145 }0.149 }0.069 ]0.171 ]0.075 (0.076 }0.061 ]0.015
Oxy 2 0.5 0.304 {0.317 ]0.336 ]0.324 0.327 [0.325 ]0.328 ]0.327
Oxy 3 0.0 0.585 0.515 0.586 0.587
Oxy 4 0.5 0.663 0.643 0.662 0.647
Oxy 5 0.5 0.952 ]0.937 0917 ]0.938
Oxy 6 0.5 0.430 ]0.420 ]0.452 ]0.418 ]0.404
Oxy 7 0.5 0.037 ]0.043 ]0.029 ]0.049
Oxy 8 0.0 0.265 0.223 }0.259 ]0.267
Oxy 9 0.0 0.923 ]0.894 ]0.948 ]0.918

e e — pessmeme—
y? 3.45 2.27 2.78 2.17 1.56 1.12 1.054 10.937 ]0.805
D.o.F 15 13 11 13 9 9 7 9 7
%o 0.002 ]0.5 0.1 0.8 12.2 34.7 39.6 49.8 40.8
SR —

a_ _ R .
For pm symmetry, atoms were refined only along the x axis.
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6.4.2 Resulits

Table 6.2 is a list of the final refined atomic positions for the top three titanium atom

models and the corresponding x> value. The Ti atom positions for the Microfacet model

and the Missing row model (Zschack, Cohen and Chung, 1992) were also examined and

allowed to relax with both p2mm and pm symmetry. The 4 Ti atom model had the lowest

initial R-factor of 0.26 for the unrefined atomic position and gave the best ¥ and the

highest probability of those investigated. A comparison of the calculated and observed
structure factors for the microfacet model and the 4 Ti atom model including titanium atom

positions only is shown in Figure 6.4. The addition of oxygen atoms improved the

calculated %2, shown in Table 6.3.

Figure 6.4 Comparison of the measured () and the calculated (O) structure factors for
the (a) microfacet model (Zschack, Cohen and Chung, 1992) and (b) the model with 4
titanium atoms in the unit cell. Figure 6.4b corresponds to a R-factor of 0.26.
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The positions of the surface atoms are shown relative to bulk atomic structure based

upon necessary chemical and physical constraints. Figure 6.5 is a model of the TiO,(100)-

1x3 surface with four surface titanium and three surface oxygen atoms which were allowed

to relax. Figure 6.6 has four surface titanium atoms and seven oxygen. Because of the

lack data concerning displacements perpendicular to the surface, bulk atomic displacements

for that direction were assumed.

O bulk Ti @ surface Ti
e bulk O o surface O <010> }

NSETITRANRSN TR RN
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Figure 6.5 Bulk atom positions (O) and relaxed surface atom positions (@) for four
titanium and three oxygen atoms within the surface unit cell. Structure is viewed along
the <001> and <100> directions.
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Figure 6.6 Bulk atom positions (O) and relaxed surface atom positions (@) with
four titanium and seven oxygen atoms in the surface unit cell. Structure is viewed
along the <001> and <100> directions.

6.5 Discussion

Interpretation of the structure is somewhat straight forward. Referring to the

octrahedral representation shown in Figure 6.7, rather than the only corner and edge

sharing octahedral sites, as observed in the bulk, the surface of T10,(100)-1x3 reconstructs

to an edge and face sharing structure. Compared to the bulk structure, there are two edge-
face sharing octahedra per unit cell leading to a nominal oxygen loss of three oxygen
atoms. Spectroscopic studies indicate the TiO,(100) surface reduces when annealed to
produce the higher order reconstruction (Chung, Lo, and Somorjai, 1977; Muryn,

Hardman, Crouch, Raiker and Thornton, 1991; Kao, Tsai, Bahl and Chung, 1992), which
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is consistent with the reduced oxygen content of our model. The basic fully occupied

octrahedral units may easily be extrapolated to a 1x5 and 1x7 periodicity which would

further reduce the oxygen content of the surface. This is also consistent with the known

spectroscopic studies of the higher order 1x5 and 1x7 surface reconstructions which show

the surface becomes more oxygen deficient at higher annealing temperatures. This family
of reconstructions, in which the surface reconstructs to occupy every octrahedral site
present as in NaCl, is similar to the standard non-stoichiometric oxygen deficient bulk
defects present in rutile known as the Ti O,,, Magenli phases (Rao and Gopalakrishnan,
1997; Wells, 1991; Kosuge, 1994).

As can be seen from Figures 5.5 and 5.6 and Table 6.3, the positions of the Ti
atoms remain consistent, regardless of the number of oxygen atoms included in the
minimization. This is due to the relative weak scattering from the oxygen atoms compared
to titanium. The oxygen atom positions, with the exception of Oxy | for model 4 Ti 9
Oxy, are also consistent for every model with the best fit for 6 to 8 oxygen atoms.

However, by adding more oxygen atoms to the refinement, the number of fitting

parameters in the x* increases, and of the degrees of freedom decreases. This can cause X’

to reach a value less than one and as well as influence the confidence of the % value.

Ideally one wants as many degrees of freedom as possible.

Strictly speaking it is problematic to discuss a detailed analysis of the oxygen
refinement with only 19 unique measured reflections. In addition, there are still issues of
non-stoichiometric surface structures which contain partial occupancy of the oxygen sites,

or multiply ionized components which cannot be addressed. Therefore, the atomic
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positions given should not be considered better than the scatter among the different models,

i.e. 0.2-0.3 A.

Figure 6.7 Octahedral representation of idealized (a) microfacet model (using all relative
bulk titanium and oxygen positions) and (b) 4 Ti atom model. Each octahedron contains
one titanium atoms at the center and an oxygen at each comer. Darker colored octahedra
correspond to suggested surface titanium atoms versus the (lighter colored) bulk
octrahedra.

It is also worth mentioning that our model does share some of characteristics with
the models proposed by Oliver et al. (1994) which were constructed using atomistic

simulations and electronic considerations. In our model the top three Ti atoms would lie at

the same level, similar to the relaxed atom positions shown by Oliver et al.
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Previous studies using Scanning Tunneling Microscopy (Murray, Leibsle, Fisher,
Flipse, Muryn and Thornton, 1992; Murray, Leibsle, Muryn, Fisher, Flipse and Thornton,
1994a; Murray, Leibsle, Muryn, Fisher, Flipse and Thornton, 1994b) images of the

TiO,(100)-1x3 surface are also consistent with our proposed model.

At the time the data was collected, it represented the best that could be achieved for
the given apparatus (Zschack, Cohen and Chung, 1992; Zschack, Cohen and Chung,
1988). Limits in the abilities to probe reciprocal space and along the surface rel-rods were

imposed by necessary design constraints of the surface diffraction system. A more

thorough exploration of reciprocal space and scans along the surface rel-rods of the

TiO,(100)-1x3 surface would facilitate a more detailed analysis of the oxygen positions,

possible oxygen vacancies, sub-surface relaxations and atomic positions normal to the
surface. Nonetheless, from the original GIXD data, along with the direct methods, it is

evident that a unit cell containing 4 titanium atoms and 6 to 8 oxygen atoms provides the

best solution for the TiO,(100)-1x3 surface.
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CONCLUSIONS

7.1 UHV-H9000 Transmission Electron Microscope & SPEAR
7.1.1 Room Temperature Au Deposition on the Si(001)-2x1 Surface

In the initial chapters the advantages of combining surface structure determination
with surface chemistry were discussed, specifically the ability of SPEAR and the UHV-
H9000 to reliably reproduce and characterize clean well ordered surfaces with low defect

densities. This was a crucial factor in unraveling the controversy concerning the room

temperature deposition of Au on the Si(001)-2x1 surface. It was through the combination

of several in-situ techniques, sensitive to surface structure and surface chemistry, that a
complete picture of the interface structure and initial growth characteristics was found.
Observed trends in the X-ray photoemission spectra and Auger electron spectra were
correlated with the observed layer plus island growth mode (Stranski-Krastanov) of Au on

the silicon surface at room temperature.

7.1.2 Future Work

It should also be mentioned that unlike many of the other UHV transmission
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electron microscopes and UHV-TEM/surface analysis hybrid systems, which are designed
for the purpose of studying only thin metal films on semiconductors, the SPEAR and
UHV-H9000 TEM system have been designed with the intention of being able to prepare
and investigate many different type of samples and substrate materials. Already SPEAR
and the UHV-H9000 have been used to investigate boron nitride thin films (Bengu et al.,
1998; Collazo-Davila, Bengu, Leslie and Marks 1998).

Among several future projects, a new deposition system for studying the initial
growth characteristics of thin films grown by magnetron sputtering (Bengu et al., 1998) is
expected to be added in the coming year. The new system is designed to be a completely
mobile, self-contained system, able to deposit films and multi-layers structures
independently, or interface with the current SPEAR/UHV H-9000 system for in-situ
structure and surface chemical analysis.

In addition there are currently plans of adding a gas reaction chamber to the
SPEAR/UHV-H9000 system for investigating surface catalysis under reactive

environments. In each of these investigation, techniques described in the room temperature

deposition of Au on Si(001)-2x1 will be used for preparing clean, well characterized

substrate surfaces and investigating the ensuing film growth morphology.

7.2 Application of Direct Methods to Surfaces

It has also been demonstrated that for both transmission electron diffraction data
and grazing incidence X-ray diffraction data from surfaces, it is possible to restore a two
dimensional projection of the electron potential (or charge density) to describe the surface

atomic structure. This has been shown for various two dimensional models as well as the
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Table 7.1 List of surface structures solved by direct methods (Marks et al., 1998).

Surface Structure Diffraction Data Reference

Si(11 l)-(\/3x‘/3)R30° Au* electron Marks, Plass and Dorset, 1997

Si(111)-(5%2) Au* electron Marks, Plass and Dorset, 1997

Si(111)-(7x7)* electron Gilmore et al., 1997

Si(111)-(4x1) In electron Collazo-Davila, Marks, Nishii and
Tanishiro, 1997

Si(111)-(6x%6) Au X-ray Grozea, Landree, Marks,
Feidenhans’l, Neilsen and Johnson,
1998

TiO,(100)-(1x3) X-ray Landree, Marks, Zschack and
Gilmore, 1998

Si(111)-(v 3x*/3)R30° Ag* electron Grozea, Landree, Collazo-Davila,
Bengu, Plass and Marks, 1998

Si(111)-(3x1) Ag electron Collazo-Davila, Grozea and Marks,
1998

Ge(111)-(4x4) Ag X-ray Collazo-Davila et al., 1998a

MgO(111)-(V3xV3)R30° electron Plass et al., 1998

MgO(111)-(2x2) electron Plass et al., 1998

MgO(111)-(2V3x2V3)R30° electron Plass et al., 1998

* - denotes structures used as calibration tests in addition to the models presented in

Chapter S.

TiO,(100)-1x3 surface reconstruction of rutile which have been solved using either the

Sayre-type operator or the minimum relative entropy algorithm. For relatively simple
structures with large, complete set of measured reflections, structures may be solved by the
application of a Sayre-type operator (Landree, Collazo-Davila and Marks, 1997). In
addition to the models described, this method has also been used in reliability tests for the

Au on Si(111)-V3xV3 and 5x2 surfaces (Marks, Plass and Dorset, 1997), and solved the

In on Si(111)-4x1 surface (Collazo-Davila, Marks, Nishii and Tanishiro, 1997).

For more complicated structures or structures with a larger percentage of

unmeasured reflections, the minimum relative entropy operator, able to account for (and in
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many cases correctly predict) the unmeasured moduli and phases, has been used to restore
a two dimensional projection of the atomic surface structure. This has opened up a new
possibility of using direct methods to solve atomic surface crystal structures. Table 7.1 is a
list of all of the current surface crystal structures that have been solve thus far by the
application of direct methods. It is worth mentioning that prior to 1997, no surface
structure had ever been solve using this technique.

It should also be stressed that this approach is by no means limited to only
crystallography. Areas of study such as image processing, stellar-speckle interferometry,
and wave-front sensing have been using this same approach to recover missing or distorted
phase information for several years. Discussion related to another type of phase problem,
solving the Josephson tunneling current across a grain boundary, has been reserved for
appendix A. Though not surface crystallography, it is another example of the utilizing the
relationship between the measured moduli and known constraints about the problem in a
direct methods approach to restore a one dimensional function that describes current

tunneling across the boundary.

7.2.1 Future Work

Already one example has been mentioned (and is described in more detail in
Appendix A) of applying the phase restoration algorithm to a different class of problems.
Another similar type of problem that has yet to be explored is the application of direct
methods to X-ray reflectivity data. In this problem the measured intensities are related to
the modulus squared of the first derivative of the electron density profile perpendicular to
the film surface. Under the correct conditions, it should be possible to restore ab inito a
one dimensional function that describes the film density and structure using a similar direct

methods approach to the one described in Appendix A.
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7.2.1.1 3D Structure Determination of a Surface
Returning again to the topic of the application of direct methods for surface
diffraction data, so far the discussion has been limited to restoring two dimensional

projections of the atomic surface structure. However, there has been some progress

toward including reflections measured along the surface rel-rods (1#0) in the analysis of

surface diffraction data by direct methods. Restoration of the correct phase values for the
a-periodic measurements made along the surface rel-rods is in many ways similar to the one
dimensional problem described in Appendix A.

Incorporation of the suffice rel-rod reflections requires that a compact support
constraint (Millane, 1996; Crimmins and Fienup, 1983; Crimmins and Fienup, 1981) be
included in real space above and below the surface of interest. However, this requires that
some assumption be made concerning the absolute height of the surface structure. For
example, if one defines the unit cell distance along the surface rel-rods (I=1) as 0.0253 A,
this will produce a corresponding real space unit cell height of roughly 40 A. Assuming
the height of the surface structure was contained within a region of 10 A, at each iteration

the algorithm would set the density map for the top and bottom 15 A to zero. The resulting

phases for the 10 reflections from the Fourier transformed density map are then modified

to reflect a surface structure with a total height no greater than 10 A. The process is iterated
at each cycle of the algorithm along with the minimum relative entropy operator.

Another important point to mention is that in order for 3D surface direct methods to
be successful, measurements along the surface rel-rods must also extend far enough in

reciprocal space to provide reasonable resolution in real space. If one assumes the surface
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structure has a total height of 5 A, but only has information out to 10 A resolution along the
surface rel rods, information about the z-height structure can be resolved.

So far the only technique available for measuring along the surface rel-rods is
grazing incidence X-ray diffraction. However, another possible experiment would be to
explore measuring surface rel-rod intensities via transmission electron diffraction. By
tilting the surface of interest with respect to the incident beam, the Ewald sphere can

intersect with the surface rel-rods, allowing measurements to be made for reflections where

1#0. However, as discussed above, the tilt must be large enough (or the information in the

I=0 plane extend far enough in reciprocal space) to measure sufficient resolution along the

rel-rods to realistically resolve atom positions perpendicular to the surface. For the
standard UHV-H9000 microscope cartridge, which has a maximum tilt of +10°, this would

require surface spots out to 0.3 A resolution in the 1=0 plane to achieve 2.0 A resolution
perpendicular to the surface. This is based upon approximating the Ewald sphere to be a
plane tilted 10° with respect to the surface normal.

One possible way around this would be to either mount the sample in the cartridge
at an angle, thereby increasing the maximum tilt angle for one direction, or developing a
high-tilt cartridge able to achieve tilts greater than 10° in the microscope column. By
extending the tilt to only 20°, it is possible achieve 2.0 A resolution perpendicular to the
surface with reflections out to 0.7 A resolution in the 1=0 plane.

One point is especially clear, as new technologies and new solutions to problems in
processing are needed, there is a growing need to understand the fundamental atomic
structure and chemistry of surfaces. Solutions to these challenges will include new devices
for probing and characterizing surface phenomena as well as new techniques for analyzing

surface data. It may be years before the amount of knowledge about surfaces can compare
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to our current understanding of bulk properties and bulk phenomena. However, science
and industry alike are both becoming aware of the need to explore and understand surface

phenomena in order to overcome foreseeable obstacles in the coming decade.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

Adamchuk, V.K., and A.M. Shikin. 1990. Si - Noble Metal (Au, Cu, Ag) interface
formation studies by AES. J. Electr. Spectr. Rel. Phenom. 52: 103-112.

Andersen, G.A., J.L. Bestel, A.A. Johnson, and B. Post. 1971. Eutectic decomposition in
the gold-silicon system. Mater. Sci. Eng. 7: 83-90.

Baker, J.E. 1985. In Proceedings of an International Conference on Genetic Algorithms
and Their Applications. Hillsdale, NJ: Erlbaum.

Barone, A. 1982. Physic and Applications of the Josephson Effect . John Wiley & Sons,
Inc.

Bengu, E., C. Collazo-Davila, D. Grozea, E. Landree, I. Widlow, M. Guruz, and L. D.
Marks. 1998. In-situ growth and characterization of ultrahard thin films. Journal of
Microscopy Research and Technique. In Press.

Braicovich, L., C.M. Garner, P.R. Skeath, C.Y. Su, P.W. Chye, L. Lindau, and W.E.
Spicer. 1979. Photoemission studies of the silicon-gold interface. Phys. Rev. B 20: 5131-
5141.

Bricogne, G. and C. J. Gilmore. 1990. A multisolution method of phase determination by
cmbined maximization of entropy and likelooh. I. theory, algorithm and strategy. Acta.
Cryst. A 46: 284-297.

Brillson, L.J., A.D. Katnani, M. Kelly, and G. Margaritondo. 1984. Photoemission
studies of atomic redistribution at gold-silicon and aluminum-silicon interfaces. J. Vac. Sci.
Technol. A 2: 551-555.

Boland, J.J. 1990. Structure of the H-saturated Si(100) surface. Phys. Rev. Lett. 65:
3325-3328.

Bonevich, J.E., and L.D. Marks. 1992. Ultrahigh vacuum electron microscopy of
crystalline surfaces. Microscopy: The Key Research Tool 22: 95-101.

Carmody, M., E. Landree, L.D. Marks, and K.L. Merkle. 1998. Determination of the
current density distribution in Josephson junctions. Physical Review B, Submitted.

Chen, C.R., and L.J. Chen. 1995. Morphological evolution of the low-temperature
oxidation of silicon with a gold overlayer. J. Appl. Phys. 78: 919-925.

Chrétien, S. and P. Bondon. 1996. Cyclic projection methods on a class of nonconvex
sets. Numer. Funct. Anal. and Optimiz. 17(1&2): 37-56.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



114

Chung, Y. W., W.J. Lo, and G. A. Somorjai. 1977. Low energy electron diffraction and
electron spectroscopy studies of the clean (110) and (100) titanium dioxide (rutile) crystal
surfaces. Surf. Sci. 64: 588-602.

Cochran, W. 1955. Relations between the phases and structure factors. Acta Cryst. 8: 473-
478.

Collazo-Davila, C., E. Landree, D. Grozea, G. Jayaram, R. Plass, P. Stair, and L.D.
Marks. 1995. Design and initial performance of an ultrahigh vacuum sample preparation
evaluation analysis and reaction (SPEAR) system. JMSA 1: 267-279.

Collazo-Daviia, C., E. Bengu, C. Leslie, and L. D. Marks. 1998. Formation of BN
nanoarches: Possibly the key to cubic boron nitride film growth. Applied Physics Letters
72(3): 314-316.

Collazo-Davila, C., D. Grozea, and L. D. Marks. [998. Determination and refinement of
the Ag/Si(111)-(3x1) surface structure. Physical Review Letters 80(8): 1678-1681.

Collazo-Davila, C., D. Grozea, L.D. Marks, R. Feidenhans’l, M. Nielsen, L. Seehofer, L.
Lottermoser, G. Falkenberg, R. L. Johnson, M. Géthelid, and U. Karisson. 1998a.

Solution of the Ge(111)-(4x4)-Ag structure using direct methods applied to X-ray
diffraction data. Surface Science. In press.

Collazo-Davila, C., L. D. Marks, K. Nishii, and Y. Tanishiro. 1997. Atomic structure of
the In on Si(111) (4x1) surface. Surface Review and Letters 4(1): 65-70.

Combettes, P.L. 1996. Method of successive projections for finding a common point of
sets in metric spaces. Advance in Imaging and Electron Physics 95: 155-261.

Combettes, P.L., and H.J. Trussell. 1990. Method of Succssive Projection for Finding a
Common Porint of Sets in Metric Spaces. Journal of Optimization Theory and Applications
67(3): 487-507.

Crimmins, T. R. and J. R. Fienup. 1981. Ambiguity of phase retrieval for functions with
disconnected support. J. Opt. Soc. Am. 71(8): 1026-1028.

Crimmins, T. R. and J. R. Fienup. 1983. Uniqueness of phase retrieval for functions with
sufficient disconnected support. J. Opt. Soc. Am. 73(2): 218-221.

Cros, A., and P. Muret. 1992. Properties of noble-metal silicon junctions. Mat. Sci. Rep.
8: 271-367.

Dainty, J.C. and J.R. Fienup. 1987. Image Recovery: Theory and Application. Academic
Press.

Dallaporta, H., and A. Cros. 1986. Atomic bonding at the Si-Au and Si-Cu interfaces.
Surf. Sci. 178: 64-69.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

Davis, L. (eds.) 1987. Genetic Algorithms and Simulated Annealing. Pitman Publishing.

Derbyshire, K. 1997. Market Snapshot: Semcon/West Show Report. Solid State
Technology®. September 1997: 52.

De Jong, K. A. and W. M. Spears. 1990. In Proceedings of First Workshop on Parallel
Problem Solving from Nature. edited by G. Goos and J. Hartmanis. Springer-Verlag. pp.
38-47.

Dhere, N.G., and C. de A. Loural. 1981. Metastable structures in Au-Si thin films. Thin
Solid Films 81: 213-223.

Doraiswamy, N., G. Jayaram, and L.D. Marks. 1995. Unusual island structures in Ag
growth on Si(100)-(2x1). Phys. Rev. B 51:10167-10170.

Durbin, S.M., L.E. Berman, B.W. Batterman, and J.M. Blakely. 1986. X-ray standing-
wave determinatino of surface structure: Au on Si(111). Phys. Rev. B 33: 4402-4405.

Dynes, R.C. and T.A. Fulton. 1971. Supercurrent density distribution in Josephson
junctions. Phys. Rev. B 3: 3015-3023.

Escher, M. C. 1989. Escher on Escher: exploring the infinite. New York: Harry N.
Abrams, Inc. p. 110.

Fienup, J.R. 1978. Reconstruction of an object from the modulus of its Fourier tranform.
Optics Letters 3: 27-29.

Feniup, J.R. 1982. Phase retriveal algorithms: a comparison. Applied Optics 21: 2758-
2761.

Fujishima, A. and K. Honda. 1972. Electrochemical photolysis of water at a
semiconductor electrode. Nature 238: 37-38.

Fujita, D., M. Schleberger, and S. Tougaard. 1996. Extraction of depth distributions of
electron-excited Auger electrons in Fe, Ni and Si using inelastic peak shape analysis. Surf.
Sci. 357-358: 180-185.

Gaigher, H.L., and N.G. Van Der Berg. 1980. The structure of gold silicide in thin Au/Si
films. Thin Solid Films 68: 373-379.

Gerchberg, R.W. and W.O. Saxton. 1972. A practical algorithm for the determination of
phase from image and diffraction plane pictures. Optik 35: 237-246.

Gerchberg, R.-W. 1974. Super-resolution through error energy reduction. Optica Acta 21:
709-720.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

Gilmore, C. J., L. D. Marks, D. Grozea, C. Collazo, E. Landree, and R. D. Twesten.
1997. Direct solutions of the Si(111) 7x7. Surf. Sci. 381: 77-91.

Goldberg, D.E. 1989. Genetic Algorithms in Search Optimization and Machine Learning.
New York Addison-Wesley Publishing Co. Inc.

Green, A.K., and E. Bauer. 1976. Formation, structure, and orientation of gold silicide on
gold surfaces. J. Appl. Phys. 47: 1284-1291.

Green, A K., and E. Bauer. 1981. Gold monolayer on silicon single crystal surfaces.
Surf. Sci. 103: L127-L133.

Grefenstette, J. J. 1986. Optimization of Control Parameters for Genetic Algorithms. IEEE
Transactions on Systems, Man & Cybernetics SMC-16: 122-128.

Grozea, D., E. Landree, and L.D. Marks. 1997. Surface roughening by electron beam
heating. Appl. Phys. Lett. 71: 2301-2303.

Grozea, D., E. Landree, L. D. Marks, R. Feidenhans’l, M. Nielsen, and R. L. Johnson.

1998. Direct methods determination of the Si(111)-(6x6) Au surface structure. Surface
Science. In press.

Grozea, D, E. Landree, C. Collazo-Davila, E. Bengu, R. Plass, and L. D. Marks. 1998.
Structural investigation of metal-semiconductor surfaces. Micron: Speical Edition. In press.

Gutowski, M. W. 1994. Smooth genetic algorithm. J. Phys. A: Math. Gen. 27: 7893-
7904.

Hanbiicken, M., Z. Imam, J.J. Métois, and G. Le Lay. The first stages of the formation of
the interface between gold and silicon (100) at room temperature. Surf. Sci. 162: 628-633.

Henrich, V. E. 1979. Ultraviolet photoemission studies of molecular adsorption of oxide
surfaces. Progress in Surface Science 9: 143-164.

Henrich, V. E., G. Dresselhaus, and H. J. Zeiger. 1977. Chemisorbed phases of H,O on
TiO, and SrTiO,. Solid State Commun. 24: 623-626.

Henzler, M. 1996. Growth of epitaxial monolayers. Surf. Sci. 357-358: 809-819.

Hiraki, A. 1984. Low temperature reactions at Si/metal interfaces; what is going on at the
interfaces. Surf. Sci. Rep. 3: 357-412.

Hiraki, A., and M. Iwami. 1974. Electronic structure of thin gold film deposited on silicon

substrate studied by Auger elelctron and x-ray photoemission spectrocopies. Jap. J. Appl.
Phys. Suppl. 2: 749-752.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



117

Hiraki, A., A. Shimizu, M. Iwami, T. Narusawa, and S. Komiya. 1975. Metallic state of
Si in Si-noble-metal vapor-quenched alloys studied by Auger electron spectroscopy. App!.
Phy. Lett. 26: 57-60.

Holland, J. H. 1968. Descriprions of Universal Spaces and Adaptive Systems, Technical
Report ORA Projects 01252 and 08226. University of Michigan, Department of Computer
and Communication Sciences.

Holland, J. H. 1975. Adaptation in Natural and Artificial Systems. Ann Harbor: University
of Michigan Press.

Hricovini, K., J.E. Bonnet, B. Carriére, J.P. Deville, M. Hanbiicken, and G. Le Lay.
1989. Photoelectron spectroscopy studies of the formation of the Au-Si(100) interface
using synchrotron radiation. Surf. Sci. 211/212: 630-636.

Ichikawa, M., and T. Doi. 1990. Observation of electromigration effect upon Si-MBE
growth on Si(001) surface. Vacuum 41: 933-937.

Iwami, M., T. Terada, H. Tochihara, M. Kubota, and Y. Murata. 1998. Alloyed interface
formation in the Au-Si(111)2x1 system studied by photoemission spectroscopy. Surf. Sci.
194: 115-26.

Jayaram, G., P. Xu, and L.D. Marks. 1993. Structure of Si(100)-(2x1) surface using
UHV transmission electron diffraction. Phys. Rev. Lett. 71: 3489-3492.

Jayaram, G., and L.D. Marks. 1995. Atomic structure of the Si(100)-(5x3)-Au surface.
Surf. Rev. and Lett. 2: 731-739.

Jayaram, G., R. Plass, and L.D. Marks. 1995. UHV-HREM and diffraction of surfaces.
Interface Science 2: 379-395.

Jin, HS., T. Ito, and W.M. Gibson. 1985. Transmission channeling study of the
Au/Si(100) interface. J. Vac. Sci. Technol. A 3: 942-945.

Josephson, B.D. 1965. Supercurrents through barriers. Advances in Physics 14: 419-451.

Kahata, H., and K. Yagi. 1989. REM observation on conversion between single-domain

surfaces of si(001) 2x1 and 1x2 induced by specimen heating current. Jpn. J. Appl. Phys.
28: L858-L861.

Kao, C. C., S.C. Tsai, M. K. Bahl, Y.W. Chung, and W. J. Lo. 1980. Electronic
properties, structure and termperature-dependent composition of nickel deposited on rutile
titanium dioxide (110) surfaces. Surf. Sci. 95: 1-14.

Karle, J. and H. Hauptman. 1956. A theory of phase determination for the four types of
non-centrosymmetric space groups 1P222, 2P222, 3P,2, 3P,2. Acta Cryst. 9: 635-651.

Kasowski, R. V. and R. H. Tait. 1979. Theoretical electronic properties of TiO, (rutile)
(001) and (110) surfaces. Physical Review B 20: 5168-5177.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

Kato, H. 1989. Eutectic reactions and textures of Au-Si alloy films on single-crystal
silicon. Jap. J. Appl. Phys. 28: 953-956.

Korgel, B. A., and D. Fitzmaurice. 1998. Self-assembly of silver nanocrystals into two-
dimensional nanowire arrays. Advanced Materials. 10: 661-665.

Kosuge, K. 1994. Chemistry of Non-stoichiometric Compounds. Oxford, Oxford
University Press. pp. 115-129.

Koza, J. R. 1992. Genetic Programming. The MIT Press.

LaFemina, J.P. 1992. Total-energy calculations of semiconductor surface reconstructions.
Surface Science Report 16: 138-248.

Landree, E., C. Collazo-Davila, and L.D. Marks. 1997. A Multi-solution Genetic
Algorithm Approach to Surface Structure Determination Using Direct Methods. Acta Cryst.
B 53: 916-922.

Landree, E., L. D. Marks, P. Zschack, and C. J. Gilmore. 1998. Structure of the
Ti0,(100)-1x3 surface by direct methods. Surface Science. 408: 300-309.

Le Lay, G. 1981. The Au/Si(111) interface: growth mode, energetics, structural and
electronic properties. J. Cryst. Growth 54: 551-557.

Lin, X.F., and J. Nogami. 1994. Au on the Si(001) surface: room-temperature growth. J.
Vac. Sci. Technol. B 12: 2090-2093.

Lin, X.F., K.J. Wan, J.C. Glueckstein, and J. Nogami. 1993. Gold-induced

reconstructions of the Si(001) surface: the 5x3 and V26x3 phases. Phys. Rev. B 47: 3671-
3676.

Lu, Z.H., T.K. Sham, K. Griffiths, and P.R. Norton. 1990. Studies of Au interaction on
Si(100) by photoemission spectroscopy. Solid St. Comm. 76: 113-116.

Lu, Z.H., T.K. Sham, and P.R. Norton. 1993. Interaction of Au on Si(100) studied by
core level binding energy shifts. Solid St. Comm. 85: 957-959.

Marks, L. D. 1991. Rigor, and plan-view simulation of surfaces. Ultramicroscopy 38:
325-332.

Marks, L. D., R. Plass, and D. Dorset. 1997. Imaging surface structures by direct
phasing. Surface Review and Letters. 4(1): 1-8.

Marks, L. D. and E. Landree. 1998. A Minimum Entropy Algorithm for Surface Phasing
Problems. Acta Cryst. A 54: 296-305.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

Marks, L. D., E. Bengu, C. Collazo-Davila, D. Grozea, E. Landree, C. Leslie, C. and W.
Sinkler. 1998. Direct methods for surfaces. Surface Review and Letters. In press.

Marks, L. D., W. Sinkler, and E. Landree. 1998. A feasible set approach to the
crystallographic phase problem. Acta Cryst. A . Submitted.

Masi, C. G. 1998. Metrology blazes the trail to smaller semiconductors. Cahners R&D:
Research and Development. 40: 14-20.

Mathieu, G., R. Contini, J.M. Layet, P. Mathiez, and S. Giorgio. 1988. The
Aw/Si(111)7x7 interface: correlation between electronic and morphological properties by
high-resolution electron energy-loss spectroscopy, ultraviolet photomession spectroscopy,
and transmission electron microscopy. J. Vac. Sci. Technol. A 6: 2904-2909.

Meinel, K., and D. Katzer. 1992. Modes of growth of Au films on Si(111) and the
mechanism of the silicide formation. Appl. Surf. Sci. 56-58: 514-519.

Millane, R. P. 1996. Multidimensional phase problems. J. Opt. Soc. Am. A 13(4): 725-
734.

Munnix, S. and M. Schmeits. 1984. Electronic structure of ideal Ti0,(110), TiO,(001),
and TiO,(100) surfaces. Phys. Rev. B 30: 2202-2211.

Murray, P. W., F. M. Leibsle, H. J. Fisher, C. F. J. Flipse, C. A. Muryn, and G.

Thornton. 1992. Observation of ordered oxygen vancancies on TiO,(100) 1x3 using
scanning tunneling microscopy. Phys. Rev. B 46: 12877-12879.

Murray, P. W., F. M. Leibsle, C. A. Muryn, H. J. Fisher, C. F. J. Flipse, and G.
Thornton. 1994a. Extended defects on TiO,(100) 1x3. Surf. Sci. 321: 217-228.

Murray, P.W., F. M. Leibsle, C. A. Muryn, H. J. Fisher, C. F. J. Flipse, and G.

Thornton. 1994b. Interrelationship of Structural Elements on T10,(100)-(1x3).Phy. Rev.
Lert. 72: 689-692.

Muryn, C. A, P. J. Hardman, J. J. Crouch, G. N. Raiker, and G. Thornton. 1991. Step
and point defect on TiO,(100) reactivity. Surf. Sci. 251/252: 747-752.

McCaffrey, J. P. 1997. The use of transmitted color and interference fringes for TEM
sample preparation of silicon. Microscopy of Semiconductor Materials 1957 1997(157):
461-464.

McCaffrey, J. P., B. T. Sullivan, J. W. Fraser, and D. L. Callahan. 1996. Use of
transmitted color to calibrate the thickness of silicon samples. Micron 27(6): 407-411.

Nakano, R., Y. Davidor, and T. Yamada. 1994. In Proceedings of the Third Conference

on Parallel Problem Solving from Nature. edited by Y. Davidor, H.-P. Schwefel and R.
Minner. Springer-Verlag. pp. 130-138.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



120

Nakashima, K., M. Iwami, and A. Hiraki. 1975. Low temperature diffusion of Au into Si
on the Si(substrate)-Au(film) system. Thin Solid Films 25: 423-430.

Narusawa, T., S. Komiya, and A. Hiraki. 1973. Diffuse interface in Si (substrate)-Au
(evaporated film) system. Appl. Phys. Lett. 22: 389-390.

Narusawa, T., K. Kinoshita, W.M. Gibson, and A. Hiraki. 1981. Structure study on Au-
Si interface by MeV ion scattering. J. Vac. Sci. Technol. 18: 872-875.

Narusawa, T., W.M. Gibson, and A. Hiraki. 1981. Initial stage of room-temperature
metal-silicide formation studied by high-energy He*-ion scattering. Phys. Rev. B 24: 4835-
4838.

Oberli, L., R. Monot, H.J. Mathieu, D. Landolt, and J. Buttet. 1981. Auger and x-ray
photoelectron spectroscopy of small Au particles. Surf. Sci. 106: 301-307.

Okuno, K., T. Ito, M. Iwami, and A. Hiraki. 1980. Presence of critical Au-film thickness
for room temperature interfacial reaction between Au(film) and Si(crystal substrate). Solid
St. Comm. 34: 493-497.

Oliver, P. M., Parker, S. C., Purton, J. and D. W. Bullett. 1994. Atomistic simulations
and electronic structure of TiO,(100) surfaces. Surf. Sci. 307-309: 1200-1205.

Oura, K., Y. Makino, and T. Hanawa. 1976. Gold-induced superstructures on Si(100)
surfaces as observed by LEED-AES. Jpn. J. Appl. Phys. 15: 737-738.

Oura, K., and T. Hanawa. 1979. LEED-AES study of the Au-Si(100) system. Surf. Sci.
82: 202-214.

Papoulis, A. 1962.The Fourier Integral and Its Applications McGraw-Hill, New York.

Peng, Y. C., C.R. Chen, and L. J. Chen. 1998. Improvement of the morphological
stability of Ag film on (001)Si with a thin interposing Au layer. Journal of Materials
Research 13: 90-93.

Perfetti, P., S. Nannarone, F. Patella, C. Quaresima, A. Savoia, F. Cerrina, and M.
Capozi. 1980. Energy loss spectroscopy (ELS) on the Si-Au system. Solid Stat. Comm.
35: 151-153.

Plass, R., K. Egan, C. Collazo-Davila, D. Grozea, E. Landree, L.D. Marks, and M.
Gajdarkziska-Josifovska. 1998. Cyclic ozone identified on magnesium oxide (111) surface
reconstruction. Physical Review Letters. Submitted.

Rao, C.N.R. 1993. Fascinating chemistry of metal clusters on carbon clusters (fullerenes).
Solid State Ionics 63-65: 835-845.

Rao, C. N. R and J. Gopalakrishnan. 1997. New Directions in Solid State Chemistry:
Cambridge, Cambridge Univeristy Press. pp. 257-277.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



121

Ramkrishna, D., and N.R. Amundson. 1985. Linear Operator Methods in Chemical
Engineering. Prentice-Hall, Inc. Englewood Cliffs, NJ. pp.6.

Robison, W., R. Sharama, and L. Eyring. 1991. Observation of gold-silicon alloy
formation in thing films by high resolution electron microscopy. Acta Metall. Mater. 39:
179-186.

Rohrer, H. 1994. Scanning tunneling microscopy: a surface science tool and beyond.
Surf. Sci. 299/300: 957-964.

Salvan, F., A. Cros, and J. Derrien. 1980. Electron energy loss measurements on the
gold-silicon interface. J. Phys. Lett. 41: L337-340.

Sayre, D. 1952. The Squaring Method: a new method of phase determination. Acta Cryst.
5: 60-65.

Schaffer, J. D, R. A. Caruana, L. J. Eshelman, and R. Das. 1989. In Proceedings of the
Third International Conference on Genetic Algorithms, edited by J. D. Schaffer. Morgan
Kaufman Publishers, Inc. pp 51-60.

Sezan, M. L. 1992. An overview of convex projections theory and its application to image
recovery problems. Ultramicroscopy 40: 55-67.

Stark, H. 1987. Image Recovery: Theory and Application, Restoration from Phase and
Magnitude by Generalized Projections .Academic Press.

Stark, H and E.T. Olsen. 1992. Projection-based image restoration. J. Opt. Soc. Am. A 9:
1914-1919.

Stierle, A., T. Muhge, and H. Zabel. 1994. Oxidation of epitaxial Fe films monitored by x-
ray reflectivity. J. Mater. Res. 9: 884-890.

Stoddard, J. L. 1894. Napoleon from Corsica to St. Helena. Chicago. Werner Company.
p. 53.

Szabo, A. and T. Engel. 1995. Structural studies of TiO,(110) using scanning tunneling
microscopy. Surf. Sci. 329: 241-254.

Taleb-Ibrahimi, A., C.A. Sebenne, D. Bolmont, and P. Chen. 1984. Electronic properties
of cleaved Si(111) upon room-temperature deposition of Au. Surf. Sci. 146: 229-240.

Tanaka, K., Y. Matsumoto, T. Fujita, and Y. Okawa. 1998. Nano-scale patterning of
metal surfaces by adsorption and reaction. Applied Surface Science. 130-132: 475-483.

Tanishiro, Y. and K. Takayanagi. 1989. Validity of the kinematical approximation in

transmission electron diffraction for the analysis of surface structures. Ultramicroscopy 27:
1-8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



122

Tanuma, S., C.J. Powell, and D.R. Penn. 1991. Calculation of the electron inelastic mean
free paths: data for 27 elements of the 50-2000 eV range. Surf. Interface Anal. 17: 911-
926.

Thomas, M.T., and D.L. Styris. 1973. Auger spectroscopy of submonolayer gold
deposition on silicon. Phys. Stat. Sol. (b) 57: K83-K85.

Tu, K.N. 1975. Selective growth of metal-rich silicide of near-noble metals. Appl. Phys.
Lett. 27: 221-224.

Venables, J.A., G.D.T. Spiller, and M. Hanbiicken. 1984. Nucleation and growth of thin
films. Rep. Prog. Phys. 47: 399-459.

Vijayakrishnan, V., and C.N.R Rao. 1991. An investigation of transition metal clusters
deposited on graphite and metal oxide substrates by a combined use of XPS, UPS and
Auger spectroscopy. Surf. Sci. Lett. 255: L516-L522.

Walser, R.W., and R.W. Bene. 1976. First phase nucleation in silicon-transition-metal
planar interfaces. Appl. Phys. Lett. 28: 624-777.

Wells, A.F. 1975. Structural Inorganic Chemistry: Oxford-Clarendon Press. pp. 562-565.

Westwater, J., D. P. Gosain, and S. Usui. 1998. Si nanowires grown via the vapor-
liquid-solid reaction. Physica Status Solidi A.165: 37-42.

Woolfson, M. M. 1987. Direct Methods - from Birth to Maturity. Acta Cryst. A 43: 593-
612.

Woolfson M. M. and H.-F. Fan. 1995. Physical and non-physical methods of Solving
Crystal Structures. Cambridge University Press.

Xiao, Y. and D. E. Williams. 1993. Genetic algorithm: a new approach to the prediction of
the structure of molecular clusters. Chemical Physics Letters 215: 17-24.

Zajonz, H., H. L. Meyerheim, T. Gloege, W. Moritz, and D. Wolf. 1998. Surface X-ray
structure analysis of the TiO,(100)-(1x3) reconstruction. Surface Science 398: 369-378.

Zappe, H.H. 1975. Determination of the current density distribution in Josephson tunnel
junctions. Phys. Rev. B 7: 2535-2538.

Zeppenfeld, P., V. Diercks, C. Télkes, R. David, and M. A. Krzyaowski. 1998.
Adsorption and growth on nanostructured surfaces. Applied Surface Science. 130-132:
448-490.

Zschack, P., J. B. Cohen, and Y. W. Chung. 1988. A transportable surface-science for
glancing-angle X-ray diffraction. J. Appl. Cryst. 21: 466-470.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

Zschack, P., J. B. Cohen, and Y. W. Chung. 1992. Structure on the TiO,(100) 1x3

surface determined by glancing angle X-ray diffraction and low energy electron diffraction.
Surf. Sci. 262: 395-408.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A

APPLICATION OF 1D PHASE
RESTORATION TO JOSEPHSON
JUNCTIONS

The following is an example of a similar problem to the one discussed in Chapters 4
and 5 concerning the restoration of the missing phase information from a set of measured
moduli. However, in this problem the moduli describe a one dimenisonal (1D) function
that relates to the Josephson tunneling current between two grains in a superconductor.
This work has been part of a collaborative effort with Mike Carmody and Dr. Karl Merkle
through the Science & Technology Center for Superconductivity program and Argonne
National Laboratory (Carmody, Landree, Marks, and Merkle, 1998). The goal was, using

the Fourier relation between the measured moduli for the critical current across a grain

boundary as a function of an applied magnetic field I (B), to restore a 1D function j(x) that

describes spatially the tunneling current across a grain boundary. The phase restoration
code being used is a modified algorithm based upon early work done by Gerchberg and
Saxton (Gerchberg and Saxton, 1972; Gerchberg, 1971) and Fienup (Fienup, 1978;
Fienup, 1982) in the area of phase restoration. The ultimate purpose of this work is to
eventually correlate features observed in the grain boundary (using high-resolution electron

microscopy) with the local tunneling current density.
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A.1 Description of Josephson Junctions

The Josephson tunneling current refers to the applied current tunneling through a
non-superconducting region (in this case the grain boundary) between two superconducting
grains (Josephson, 1965). Variations in grain boundary structure as a result of

microfaceting, macroscopic grain boundary meandering, and intermediate phase

; /7 /7
/ / current
a /

—_ =
-

<

Figure A.1 Schematic representation of the grain boundary structure.

compositions can cause variations in the tunneling current along the boundary.

Figure A.1 shows a schematic of the basic Josephson junction geometry.
Josephson (1965) first described the Fourier transform relationship between the measured
modulation of I(B) as a function of applied magnetic field and the structure of the tunneling
current across the boundary, j(x). Dynes and Fulton (1975) then elaborated upon this
work and wrote the expression for the modulation of the critical current across a Josephson

junction of the form
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Ie(B) = (A.1)

9

J j(x)exp(iBx)dx

where j(x) is the current density flowing in the z-direction along the length of the boundary

2rD
(see Fig A.1). The quantity B = —;'Ex is the normalized magnetic field, Hy is the

o
magnetic field threading the junction including both the applied magnetic field and the field

generated by the currents flowing in the junction, g is the permeability of free space, @, is
the superconducting flux quantum (h/2e = 2.07 x 10-7 Gcm?2) and D = 2\ + d where d is

the thickness of the barrier and A is the London penetration depth of the superconductors

on each side of the barrier. From equation (A.1) the critical current as a function of the

applied magnetic field I.(B) is defined as the modulus of the Fourier transform of the

positional current density j(x), integrated from negative infinity to positive infinity and j(x)

is assumed to be zero outside of the junction, j(x) = O for IxI > a/2 (see Figure A.1).

Experimentally I¢(B) is measured, where B = [,H, to analyze the junction current

response for an applied magnetic field. If one assumes the current distribution along the
junction is uniform, equation (A.1) simplifies to a Fraunhofer pattern of the form

Ic(B) = Imax | sin(Ba/2)/(Ba/2)| (A.2)
where ‘a’ is the junction width. This description of the measured moduli has been

understood for some time (Josephson, 1965). However, in most real junctions it is not

realistic to assume that the current distribution along the junction is uniform.
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Utilizing the known Fourier relationship (Josephson, 1965; Dynes and Fulton,

1971) where

J(B) = U(B)lexplid(B)1, (A.3)
and

Lc(B) =), (A4)
it is possible to reconstruct the real space object j(x) from the modulus [J(B)I by the

application of an inverse Fourier transform assuming the phase information ¢(B) is

known,
j(x)= [J(B)exp(-ifx)dp. (A.5)

Previously Dynes and Fulton (1971) have solved for j(x) by assuming a minimum-
phase-type function. Using this assumption it was possible to use the formalisms of
Hilbert transforms (Papoulis, 1962) to calculate j(x) uniquely. However, Zappe (1975)
showed that the minimum-phase assumption used by Dynes and Fulton is not in general a

valid assumption for a Josephson junction. He also argued that without making further
assumptions about j(x), is was impossible to reconstruct j(x) from I¢(B) uniquely because
there can be multiple 1D real space objects j(x) that when Fourier transformed produce the
same modulus IJ(B)l. An example of one such model given by Zappe is shown in Figure

A.2. The issue of multiple solutions will be addressed again in the context of projection
onto sets (Gubin, Polyak and Raik, 1967; Combettes and Trussell, 1990; Combettes,
1996).
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J(x)

PR I S —

X

Figure A.2 Example of two different unique real space functions j(x), which produce
identical Fourier moduli. (Zappe, 1975).

A.2 Phase Retrieval Algorithm

For the purpose of finding the phases ¢(B) to correctly define the 1D tunneling

current along the Josephson Junction, a modified version of the Gerchberg and Saxton
input-output algorithm (Gerchberg and Saxton, 1972; Gerchberg, 1974; Fienup, 1978;
Fienup, 1982) has been developed coupled with a genetic algorithm search strategy. This
method includes a negative feed back control in both real space and in reciprocal space.
Values outside of the known constraints are projected back upon their respective sets.
Details of the phase restoration algorithm are discussed below in terms of projection onto

sets (Combettes, 1996; Combettes and Trussell, 1990).
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A.2.1 Projection onto Sets

A rigorous mathematical explanation of projection onto sets is available in
Combettes, 1996 and Combettes and Trussell, 1990. Additional discussion on the topic of
projection onto sets is also available in Chapter 4.

One set (§)) is defined as the set of all solutions where j(x) is zero for all Ix| > a2

and j(x) less than J_ and greater than zero for Ix| < a/2. The second set (§,) is the set of all

solutions whose moduli equal those of the observed moduli J,(B) such that

S ={i(x): jx)=0,[x|>a/2 ;0 < j(x) < J.|x| < a2}

) 3 A.6
8, = (i) :[FT{i0} = I.(B)} (A-6)

The same description has been used by Stark (1987) to describe a 1D phase restoration
problem where it is known that S, corresponds to a convex set and S, is 2 non-convex set.

A generalized form for the method of successive projection onto sets may be written

Jm+t =TT jm = Tjm, (A.7)
where jm.1 is the current best estimate of j(x), J_ is the previous estimate of j(x) and T| and
T3 are two projection operators, represented by T, such that when T operates on jp, it

produces jm+i. T\ is the projection of the moduli, for the function j, mapped into
reciprocal space J,,, with the experimentally observed moduli Jo(B), then mapped back to
real space. T is the projection onto the real space constraints such that

Tl = 1+81(Pl—1)

T, = 1+8(P-1) (A8

where

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

PJ.=1,B) (A.9)
and
0 x| >ar2
G,j.<0
P, =] ™" : (A.10)
Jm-0< jy < Je
Je ojm > Jc

81 and 6, are scalar constants between the values of 1 and 2 and J_ corresponds to the
maximum current through a given incremental unit of the junction Ax. The use of J. as an
additional constraint is based upon the fact that the current through a unit distance Ax along
the boundary cannot exceed the total current across the junction. (8, has been used in place

of the conventional A, to avoid confusion with the London penetration depth described in

Figure A.1)

The application of T projects the solution between sets S, and S,. For successive
projections between two convex sets, the above formalism is known to converge to an
optimal solution that best conforms to the constraints defined by each set. However, due to
insufficient information about the constraints, associated errors and the inherent non-
convexity of S, there exists a feasibility problem where more than one solution satisfies all

of the known information (Combettes and Trussell, 1990; see Chapter 4).

A.2.1.1 Feasibility Problem
As described by Zappe (1975) and Fienup (1978), there are multiple unique
solutions to be found for a given set of measured moduli. For two or more sets whose

volume overlap, there is defined a region of solutions that satisfies all of the imposed
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constraints, shown schematically as the shaded regions in Figure A.3. This is identical to
the feasible set problem defined in section 4.2. Any solution which exists in the union of
R1 and R2 will satisfy all the known constraints. To determine the true tunneling current
density across a Josephson junction, visual inspection of the grain boundary will be

necessary to distinguish between the set of feasible solutions.

Figure A.3 Schematic representation of the intersectfon between the set of solution
defined by the real space constraints (S,) and the set of solutions who moduli equal the
experimentally measured moduli (S,).

A.2.2 Generalized Algorithm

The measured moduli Ic(B) are initially seeded with a starting set of phases

controlled by a genetic algorithm search routine. The initial phases and measured moduli
are then transformed (mapped) into real space j’(x) where the real space domain constraints

are applied by a projection onto sets operation (projection T,) such that
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(1 —52 )_]'(x) ,|x| > a2
. (1—82)j'(x) ,j(x)<O0
= . 11
9= 15 ) 0<i<], (A-1h

32J. +(1-87)j' (x) J x>
The solution is then transformed (mapped) back to reciprocal space where the new

moduli are corrected using projection T, such that

J'(x) =FT'{ 8 Jo(B)-B1-(FT{j(x)}) }, (A.12)

where j’(x) is the inverse Fourier transformed phases and projected moduli and J(B) is the

observed moduli with the calculated phases. It is important to note that we are projecting

the complex quantity J,(B) that includes information about the moduli and phases.

Equations (A.11) and (A.12) are derived directly from equations (A.8) through (A.10).

A.2.3 Genetic Algorithm

Given that it is not possible to distinguish between the different solutions that
satisfy the known constraints, one would prefer to find all of the possible solutions then
distinguish between the correct solution based upon physical examination of the boundary
in question. To accomplish this the generalized phase retrieval algorithm has been coupled
with a genetic algorithm multi-solution search routine to search for all possible unique
solutions. One critical advantage of this approach is that it requires a priori only the initial
constraints which define S, and S, without making assumptions concerning the shape of
the function j(x).

The phase value of typically the strongest 10% of the total number of moduli are
controlled by the genetic algorithm. Initially, the phases for the remaining moduli are set to

zero. Iterative cycles of the phase restoration algorithm provide phases for the previously
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undefined phases by applying the real space object constraints. The genetic algorithm used
is the same described in Chapters 4 and 5.

The initial phases need only be approximate, therefore quadrant searching (45°,
135°, 225°, 315°) or binary searching (180° or 360°) is sufficient. The importance of
quadrant searches versus binary searches are discussed below.

Typical values for the population size are approximately 80 chromosomes with at
least 3 times the number of children as parents and a mutation rate corresponding to 2-3
mutations per chromosome. The phase restoration algorithm is iterated for 100 cycles for
each chromosome within the genetic algorithm for all of the models investigated unless
otherwise mentioned, and the genetic algorithm is typically iterated for 30 populations.
These are not suggested to be fixed values, rather they are guidelines which are used and
adjusted to achieve the best convergence in the final population while balancing issues such

as over convergence and the prospect of adequately searching solution space.

A.2.4 Figure of Merit
Based upon previous experience working with the phase restoration problem for 2D
surface structures (Marks and Landree, 1998; Landree, Collazo-Davila and Marks, 1997) a

figure of merit (FOMyec) of the form
FOMrec = I, (B) - J,...(B)I2 (A.14)
is used where J,(B) are the moduli and phases of the m™ iteration of the phase restoration

algorithm and J,,(B) are the moduli and phases for the m+1™ iteration. This form of the

FOMrec is also consistent with the one used by Fienup (1982). Thus defined the correct
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solution should be self-consistent after two successive iterations of the phase restoration
algorithm.

Once the solution is projected onto the measured moduli IJ (B)I and inverse Fourier

transformed into real space, the true solution should also be zero outside the object domain
constraint. Hence, before any support constraints are applied, a second figure of merit is

calculated (FOMreg]) which is defined as

NP
FOMreal = | - EM(’Z‘—)' (A.15)
Zxli o

The final FOM used by the genetic algorithm as an estimate of the goodness of fit is

FOM = aFOMrec + BFOMreal (A.16)

where o and B are constants to control the relative contributions of the FOM calculated in

reciprocal space and in real space. It has been observed that for the first few cycles of the
phase restoration program, the first term of the FOM, which is a measure of the
consistency of the each of the phases for a given iteration, appears to dominate the sum.
As the each of the solutions become more self consistent, it is the real space constraint

(FOMreal) which measures the residual outside the object domain constraint that appears to

become the dominant term.
Accuracy of the FOM was determined using a normalized “correctness” factor
(CFOM) which compares the phases determined by the algorithm to the true phases for a

given model (similar to the one described in equation (5.2)), defined as

CFOM = I/N 3 1-cos(¢c(B) - o:(B))I (A.17)
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where ¢.(B) is the calculated phase and ¢(p) is the true phase and N is the number of

phases assigned.

A.3 Methodology

Figure A.4 is an example of the calculated FOM and corresponding CFOM for four
different total number of iteration within the phase restoration algorithm. The CFOM
versus FOM plots were calculated for the asymmetric step function described by Zappe
(1975) shown in Figure A.2b. By increasing the number of iterations in the phase-

restoration algorithm, all solutions achieved a lower FOM. Hence, running the phase

a 50 iterations b o1 100 iterations

—rT T

0.004 0.006

0.002
FOM

1000 iterations

0.0005

Figure A.4 CFOM vs. FOM for moduli describing the Zappe mode! from Figure A.2 for
(a) 50, (b) 100, (c) 250 and (d) 1000 iterations of the phase restoration algorithm.
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restoration algorithm for few numbers of iterations enhanced the more locally convergent
(more locally convex in terms of set theory) nature of the true solution. This is evident
from Figure A.4 which shows two distinct solutions. The two solutions found correspond
to the “correct” (low CFOM) and its inverse (mirror image). It needs to be stressed that the
success of this algorithm is based upon the fact that a “true” solution converges faster for a
fixed number of iterations than the incorrect solution. Shown in Figure A.4d for a large
number of iterations within the phase restoration algorithm, even though all of the solutions
may achieve a lower absolute FOM, the true solutions still converge to a lower FOM than
the incorrect solutions.

ol 100 iterations
* L L A A L A |

0.08

0.06

CFOM

0.04

0.02

1'!'1!!'!1!]![1‘!'#
(SN BTSSR DA U T ST

FOM

Figure A.5 CFOM vs. FOM scatter plot for 100 iterations of the phase restoration
algorithm for the Zappe model (see Figure A.2) including a non-symmetric object
domain constraint for 2 consecutive iterations.
Since the genetic algorithm searches for all possible solutions, it typically finds both
the set of "correct solutions” and their inversions. One method of eliminating this is to

arbitrarily impose an asymmetric constraint to the solution domain for a few iteration of the

phase restoration algorithm. The result of imposing an asymmetric constraint on the
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CFOM vs. FOM is shown in Figure A.5. While this will successfully eliminate one of the
solutions, is should be stated that only by visual inspection of the boundary is it possible to
correctly orient the solution with respect to the junction. This same method is used to avoid
stagnation in the convergence (Dainty and Fienup, 1987) for 2D images restorations.

After the genetic algorithm has run a predetermined number of iterations, the final
solutions with the lowest recorded FOM are iterated within the phase restoration algorithm
for a much larger number of iterations than previously used during the genetic algorithm.

It is important to make a distinction between two possible situations. In order to
make no assumptions about the solution, one must consider solutions that can be
centrosymmetric as well as non-centrosymmetric. This is particularly important when
deciding how to define the initial phases, either binary or quadrant searches. If one only
considers quadrant searches (starting phases of 45°, 135°, 225° and 315°: after the first
iteration phases are able to vary between 0° and 360°), this reduces the possibility of finding
solutions that may be centrosymmetric in nature in favor of non-centrosymmetric solutions.
It is possible for a solution to be nearly centrosymmetric or “pseudo-centrosymmetric”. By
enforcing a centrosymmetric search algorithm (phases are only allowed to be 180° or 360°),
one finds a solution that may be close. Using these centrosymmetric solutions as the initial
phases and then allowing the solution to refine to a longer number of iterations and
allowing the phases to vary between 0° and 360°, enhances the search capability for
solutions that are pseudo-centrosymmetric in nature.

Therefore, for each set of measured moduli, it is necessary to run under two
different conditions, a true non-centrosymmetric (quadrant search) and a pseudo-
centrosymmetric algorithm. For both the non-centrosymmetric (phases between 0° and
360°) and pseudo-centrosymmetric (phases of 0° or 180°) case the genetic algorithm search

routine is initiated and each starting set of phases is iterated through the phase restoration
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algorithm for 100 iterations. These solutions are then as the starting phases for a non-
centrosymmetric solution refinement (allowing phases to be anything between 0° and 360°)

for that cycles for an additional 900 iterations.

A.4 Models

A total of nine different sine and square models were considered plus the model by
Zappe shown in Figure A.2 and a more complicated asymmetric model. For each model, a

real space function j(x) was constructed 512 pixels across. The model was then Fourier

transformed and the moduli IJ(B)! and the phases ¢(B) were calculated. The moduli IJ(B)!

were used as simulated experimental Ic(B) data and the phases were used to calculate the

CFOM for evaluation of the algorithm.

The general shape of the sine and square models used were the same as those used
by Barone (1982) who was attempting to establish a collection of different Fourier moduli
for analyzing Josephson Junctions. Shown are the results for two representative models
for each case. In all of the models from Barone, only one solutions for each model was
found which corresponded to the correct solution. Inspection of the predicted solutions

shows small oscillations about the true solution.
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Figure A.6 Two representative square models of the five different square models
investigated.
A.4.1 Square Models

Figure A.6 is a representative sampling of the different square models used to test

the algorithm. The FOM quoted has been multiplied by a factor of 1000 to enhance

sensitivity for the genetic algorithm
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Figure A.7 Representative models of the sinusoidal models investigated.

A.4.2 Sine Models

Figure A.7 is a representative sampling of the different square models used to test

the algorithm.
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Figure A.8 Solutions to the Zappe models shown in Figure A.2. Both solutions were
arrived at using the same moduli, with different search strategies.

A.4.3 Zappe Model

Figure A.8 are the results from one of the models proposed by Zappe (1975) that

are known to have identical Fourier moduli IJ(B)! but different phases ¢(B), shown in

Figure A.2. Using the same Fourier moduli, the phase retrieval algorithm described above

was able to find both solutions.
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Figure A.9 Solutions to the more complicated “Chicago” model for the (a) non-
centrosymmetric and (b) symmetric solution. The lowest solution in (a) corresponded to

an effective FOM of zero. The lowest four solutions to the centrosymmetric solution
ranged in FOM from 202 to 204.

A.4.4 Chicago Model

Figure A.9 shows the model constructed to represent a complicated “Chicago”
boundary structure. Figures A9a and A.9b are the non-centrosymmetric and
centrosymmetric solutions after 50 populations and 100 iterations of the phase restoration
program for each starting sequence of phases. Afterwards the top 40 solutions were then

used as the starting phases and then cycled through the phase restoration program for an
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additional 900 iterations, this time allowing the phases to vary between 0° and 360° for both
cases. While the non-centrosymmetric showed no observable difference, the pseudo-
centrosymmetric solutions refined a reasonable representation of the true model. Figure
A.10 is the model and the first four solutions with an effective FOM of zero. A pseudo-
centrosymmetric search approach described above was found to give the best fit to the
model. Although the solution did not correspond to an exact fit, the algorithm was able to

find solutions that possessed the correct “feel” of the model.
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Figure A.10 Top four Pseudo-centrosymmetric solutions (dashed lines) for model.
Each solution was iterated for 100 cycles of centrosymmetric (phases are 0° or 180°) then
900 iterations of non-centrosymmetric (between 0° and 360°).

A.5 Discussion

The phase problem for 1D objects is notoriously difficult to solve because of the

presence of multiple solutions. Any real space object j(x) that is consistent with all of the
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available constraints is a possible solution. Therefore, the solution to the problem is
defined as the set of feasible objects j(x). When evaluating the different test models above,
the solutions tended to belong to one of three different cases.

The first case was one in which the real space object was found to have only one
unique solution. This was observed for the different square and sinusoidal models tested.
Regardless of parameters used, only one solution which satisfied all of the known
constraints was found and it corresponded to a restoration of the real space model. It
should be mentioned that these solutions were themselves centrosymmetric and possessed
tall, straight edges.

The second case corresponded to the existence of multiple real space objects that

when Fourier transformed produce the same Fourier moduli Ic(8). The model from Figure

A.2 is one such example. However, the solution which best fit the applied constraints each
solution was again nearly a perfect restoration of the known models, as shown in Figure
A.8.

In the third case, again multiple solutions which satisfied all of the known
constraints were again identified, as in the second case. However, upon comparison to the
model, a perfect restoration was not successful but did produce a profiles j(x) that visually
resembled the model. The position of peaks and valleys in the solution corresponded well
to those in the model, but the absolute values of the solution were incorrect. Consequently,
the solution was only good as a qualitative restoration of the model.

Since the number of possible solutions is dependent on the shape of the real space
object j(x), there is no way of knowing a priori what type of solution one may be dealing
with. Therefore, it is not necessarily important to be able to find a unique solution using

the phase retrieval algorithm, but rather it is important to be able to find all possible
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solutions. To that end, the phase retrieval algorithm used for the test cases above has been
extremely successful in finding all of the solutions for a given problem.

The use of J, as an additional constraint appeared to have little effect on the
convergence of the solution as long as a J, that was greater than or equal to the maximum
current across the boundary. This would suggest it would be useful in all cases to
overestimate the value of J_.

By using a phase retrieval algorithm with a multi-solution genetic algorithm search

routine, it has been shown that it is possible to restore the phase information that is lost

when experimentally recording I¢(B) data for Josephson junctions. In general it is not

possible to find a unique solution for the 1-D phase problem, however if multiple solutions
exist for a junction, the set of all possible solutions can be compared against the boundary

microstructure and the correct solution can be determined.
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